
www.manaraa.com

University of South Carolina
Scholar Commons

Theses and Dissertations

2018

Electrochemical Methods To Study Real-Time In
Vivo Neurochemistry
Aya Abdalla
University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Chemistry Commons

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

Recommended Citation
Abdalla, A.(2018). Electrochemical Methods To Study Real-Time In Vivo Neurochemistry. (Doctoral dissertation). Retrieved from
https://scholarcommons.sc.edu/etd/4586

https://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=scholarcommons.sc.edu%2Fetd%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/4586?utm_source=scholarcommons.sc.edu%2Fetd%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


www.manaraa.com

ELECTROCHEMICAL METHODS TO STUDY REAL-TIME IN VIVO 
NEUROCHEMISTRY 

by 

Aya Abdalla 

Bachelor of Science 

American University of Sharjah, 2013 

 

Bachelor of Chemical Engineering 

American University of Sharjah, 2013 

___________________________________________________________ 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy in 

Chemistry 

College of Arts and Sciences 

University of South Carolina 

2018 

Accepted by: 

Parastoo Hashemi, Major Professor 

Stephen L. Morgan, Committee Member 

Linda Shimizu, Committee Member 

Jim Fadel, Committee Member 

Cheryl L. Addy, Vice Provost and Dean of the Graduate School 



www.manaraa.com

 ii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by Aya Abdalla, 2018  

All Rights Reserved. 



www.manaraa.com

 iii 

DEDICATION 
 

                       This dissertation is dedicated, 

 

   To my loving parents, for inspiring me to always be a  

     better human, and loving me for who I am. 

 

   To my siblings, for always having each other’s backs. 

 

   To my girls, for all the memories made and yet to  

be made. 

 

   To Saffron, for always making me laugh at your crazy,  

   no matter how bad of a day I am having. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 iv 

ACKNOWLEDGEMENTS 
 

After a long journey, to be sitting here writing this, seems like a dream I 

thought would never come to pass. The metaphorical tunnel, a lot of times, felt 

endless, and the light at the end, an unattainable goal. But, it has finally come to 

pass. These past 5 years were filled with more emotions and experiences than I 

can fit into a few sentences. There were shouts of joy at successful endeavors, 

and tears of frustration at unsuccessful ones. Through all those memorable 

moments, both wonderful and challenging, I had people who stood by me, and 

taught me to stand strong and proud.  

 First, my advisor, Dr. Parastoo Hashemi. You have been an inspiring force 

in my life, showing me the kind of researcher, mentor, and human, both in science 

and outside, that I should aim to be. I will always be grateful for everything you 

have taught me and all the obstacles you helped me through.  

Second, I would like to thank my committee members both at USC and 

Wayne State; Dr. Stephen Morgan, Dr. Linda Shimizu, Dr. Jim Fadel, Dr. Andrew 

Cisneros, and Dr. Mary Rodgers, for all your help and guidance throughout my 

PhD. Your helpful comments have allowed me to be a better scientist. In addition, 

I am grateful to all our collaborators, Dr. Stephen Morgan, Dr. Michael Heien, Dr. 

David Linden, Dr. Michael Reed, Dr. Janet Best, Dr. Fred Nijhout, and Dr. Edsel 

Pena, for broadening my horizons and teaching me that science can remain 

exciting, no matter how long you have been doing it for.  Furthermore, I will forever



www.manaraa.com

 v 

remain indebted to my undergraduate professors, who saw something in me and 

instructed me to never stop dreaming or ever put limits on how far I think I can go. 

Next, special thanks have to go to the Hashemi lab. Kevin, Thushani, 

Rachel, Srimal, Shane, Matt, Pavithra, Shirley, Anisa, Rhiannon, Megan, Jordan, 

Melinda, Alyssa, Anna Marie, Damian, Bruce, Audrey, and Ellen. Thank you all for 

more than I can say; for great friendships, great mentoring and just making a 

special journey all the more special by being memorable parts of it. Thank you for 

being there when I needed help whether it was in science, or more importantly, in 

life in general.  

I would like to also thank all those friends, whether in USC or at Wayne who 

have always made me feel like I am part of something bigger than just me, I am 

thankful to have met all of you. You will always remain with me wherever my road 

takes me next.  

To my second family, Ayoosh, Bedo, Borra, Shahooda and Yamoonti, I 

would like to send some very special thanks. You girls have taught me that family 

is not limited to blood. You have been with me every step of the way for the last 9 

years and if it was not for your constant support and friendship, I would not have 

reached where I am today. My appreciation and thanks will never be enough.  

Finally, to the most important people in my life, my family, I would like to 

send never ending thanks, love, and appreciation. I am truly blessed in my life by 

the people who surround me, but you are all, by every count, an even bigger 

blessing. To have parents and siblings who always make you feel special, smart, 

and loved is truly something to remain eternally grateful for.  



www.manaraa.com

 vi 

 In the end, I would like to thank Allah, whose love has kept me strong, and 

who guided me to where I am today, blessing me with everything I need to 

succeed as well as with people who would motivate me to always keep moving 

forward.



www.manaraa.com

 vii 

ABSTRACT 
 
 Serotonin neurotransmission has multiple facets that are challenging to 

characterize, due to the lack of analytical tools that can measure serotonin in the 

brain. In addition, the mechanisms of serotonin modulation by other 

neurotransmitters, such as histamine, are not well understood. These limitations 

make the study and treatment of disorders in which serotonin is implicated 

problematic. This dissertation presents novel electrochemical methods, in addition 

to the well-established serotonin fast-scan cyclic voltammetry (FSCV), to better 

understand the dynamics of serotonin and histamine neurotransmission in vivo. In 

Chapter 1, a method, known as fast-scan controlled adsorption voltammetry, was 

optimized to selectively and sensitively measure ambient serotonin levels in vivo. 

In Chapter 2, this newly developed method was combined with FSCV and triple 

staining immunohistochemistry to confirm that serotonin transporter density affects 

the reuptake kinetics and ambient levels of serotonin in the CA2 region of the 

hippocampus and the medial prefrontal cortex. Subsequently, to study the 

serotonin modulation by histamine, in Chapter 3, an FSCV voltammetry waveform 

for in vivo measurement of histamine was optimized, that is stable, selective, and 

sensitive. Through electrical stimulation of the MFB and measuring the evoked 

histamine signal in the posterior hypothalamus, we showed that serotonin can be 

simultaneously measured alongside histamine. In Chapter 4, our work was able to 

demonstrate that histamine has an inhibitory effect on serotonin via the H-3 
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receptors. This dissertation showcases novel electrochemical techniques that will 

help pave the way towards a more detailed understanding of the different 

mechanisms that regulate serotonin neurotransmission in vivo, including 

neuromodulatory effects by other neurotransmitters. This will enable further work 

to be carried out in disease models.
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CHAPTER 1: INTRODUCTION 
 
The human brain is arguably regarded as nature’s most complex system. 

Neurotransmitters, the brain’s signaling molecules, control various brain functions 

in regionally distinct localities. The four amine systems, dopamine (DA), histamine 

(HA), norepinephrine (NE) and serotonin (5-HT), play essential roles in brain 

chemistry.1 These roles could range from serotonin being responsible for 

regulating mood and sleep, to dopamine’s part in our reward system, or 

histamine’s role in the brain’s immune response.2-5 This makes the study of these 

biogenic amines important in furthering the understanding of different brain 

functions. My lab has specific interests in serotonin and histamine. 

 Serotonin was first identified in the central nervous system in 1953.6 Since 

its discovery, dysregulation in the serotonergic system has been linked to 

numerous neuropsychiatric and neurodegenerative diseases, such as depression, 

anxiety, and schizophrenia.7-9 Unfortunately, the treatment of these disorders 

remains challenging due to the poor characterization of serotonin neurochemistry 

in healthy and disease models and the lack of information on neuromodulators that 

affect it, such as histamine (HA).  

HA is another important monoamine in the brain with various functions, the 

most important being modulation of other neurotransmitters. It is also widely 

implicated in the brain’s immune response.5 Compared to dopamine and serotonin, 
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HA is an understudied neurotransmitter, due to the complicated electrooxidation 

mechanisms of this analyte.10 There is evidence that HA modulates serotonin 

transmission11 and since HA and serotonin coexist in many brain regions, we find 

it of merit to understand the functions of the histamine system along with the 

serotonin system. 

1.1  THE SEROTONIN SYSTEM 

Serotonin is a neuromodulator, responsible for several functions in the 

central nervous system (CNS) and the body’s peripheral nervous system. Only 2% 

of the serotonin in the body is found in the brain while the other 98% is found in 

the body.12 Serotonin is thought to be responsible for an extensive array of 

behavior and motor functions, such as mood, appetite, and the circadian rhythm.13 

Due to the vast and varied role it plays, serotonin has been implicated in diseases 

like Alzheimer’s, Autism, Parkinson’s disease, and depression.14 The biochemistry 

of serotonin is complicated, with pharmacological manipulations affecting many 

direct and indirect pathways. To further understand the role serotonin plays in the 

different neurodegenerative, neuropsychiatric disorders, and neurological 

diseases, it is critical to better comprehend the neurochemical functions of 

serotonin in the brain. 

L-Tryptophan, the precursor for serotonin, is introduced to the body through 

diet. Once in the brain, L-Tryptophan is hydroxylated to 5-hydroxytryptophan (5-

HTP) via enzyme tryptophan hydroxylase and transported into neurons. 

Subsequently aromatic amino acid decarboxylase (AADC) is responsible for 

converting 5-HTP into serotonin. Serotonin in then packaged into different vesicles 
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at the serotonin neuron terminals by the vesicular monoamine transporter (VMAT). 

When the neuron receives an action potential, the vesicles undergo exocytosis to 

release a part of their contents into the extracellular space. Upon release, 

serotonin will interact with various receptors, to propagate an electrical signal. 

Serotonin autoreceptors regulate serotonin in the extracellular space by 

autoinhibiting release. Serotonin is then removed via different transporters, the 

most important of which is the serotonin transporter (SERT), then broken down by 

monoamine oxidase (MAO) into its different metabolites such as 5-

hydroxyindolacetic acid (5-HIAA).12 

 

Figure 1.1. The synthesis, packaging, release, reuptake and metabolism of 
serotonin at a serotonin neuron terminal. TpH - tryptophan hydroxylase, 5-HTP – 
5-hyroxytryptophan, 5HIAA – 5-hydroxyindolacetic acid, MAO – monoamine 
oxidase, 5HT – serotonin, SERT – serotonin, SERT – serotonin transporter, 5HTR 
– serotonin receptor.9 

The regulation of serotonin in the brain has been under a lot of scrutiny and 

review in the past few years. This is mainly because many drugs that are thought 
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to act on the serotonin system, such as serotonin-selective reuptake inhibitors 

(SSRI’s), exhibit variable efficacies.15 Additionally, what is known about serotonin’s 

neurochemistry reveals that it is quite different from other neurotransmitters. One 

of these differences is the level of its regulation: while other neurotransmitters are 

easily found in the extracellular space at high concentrations, serotonin is only 

found at low concentrations, in addition to having various mechanisms in place to 

prevent these levels from increasing.15 

In 2014 our group described 2 reuptake mechanisms, while studying 

serotonin in the substantia nigra pars reticulata (SNr), and used a Michaelis-

Menten kinetic model to model the data. They observed three types of serotonin 

responses in the SNr. In some mice, serotonin was released then cleared quickly, 

referred to as a "fast" response. In others, the released serotonin took a longer 

time to clear, termed "slow" responses. A hybrid between the two was when the 

released serotonin exhibited both fast and slow responses. This means that there 

are two mechanisms for serotonin uptake into cells. ‘Uptake 1’ is clearance through 

the SERTs which have high affinity to serotonin but are not very efficient as was 

described by the high Km and low Vmax values calculated through the Michaelis-

Menton equation. ‘Uptake 2’ is performed by non-serotonin transporters (non-

SERTs) like dopamine transporters (DATs) or norepinephrine transporters (NETs) 

that have low affinity for serotonin but have comparatively faster rates as seen by 

the lower Km values and the higher Vmax values. The difference in clearance times 

between fast, slow, and hybrid were related to the percent of the clearance by 
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SERTs versus non-SERT's. The following is the model developed to describe 

these findings, which also includes an autoreceptor function.  

       
𝑑[𝑆 (𝑡)]

𝑑𝑡
= 𝑅 (𝑡)(1 − 𝐴(𝑡)) − 𝛼

𝑉𝑚𝑎𝑥1[𝑆 (𝑡)]

𝐾𝑚1+[𝑆 (𝑡)]
−  𝛽

𝑉𝑚𝑎𝑥2[𝑆 (𝑡)]

𝐾𝑚2+[𝑆 (𝑡)]
  

Where, S(t) is the concentration of serotonin in the extracellular space, R(t) 

the rate of serotonin release, and A(t) is the fraction of stimulated autoreceptors. 

The constants α and β represent the contribution of each of the uptake 

mechanisms, and Vmax and Km are Michaelis-Menton variables, where the slow 

uptake is denoted by the 1 and the fast by 2. Thus, when the response is slow, the 

β term is zero and α is 1 whereas when it is fast the opposite holds true. The hybrid 

response model incorporates a value for both α and β. Vmax and Km values for 

uptake 1 were calculated to be 17.5 nM/s and 5nM respectively while those for 

uptake 2 were 780 nM/s and 170nM respectively.15 

The regulation of serotonin by autoreceptors and the different uptake 

mechanisms is only part of the picture. Other mechanisms are also responsible for 

the regulation of serotonin levels in the brain, including modulation by histamine.16 

1.2 THE HISTAMINE SYSTEM 

HA is a very important chemical in the brain and in the body. It is involved 

in several physiological functions, such as allergic and immune reactions to foreign 

substances. Additionally, HA is important for regulation of digestion via gastric 

secretion. 17  As a neurotransmitter, HA is implicated in many neurological 

(1) 
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disorders such as Alzheimer’s and Parkinson’s diseases;18 the same diseases that 

serotonin is thought to play such an important role in. 

HA, like serotonin, does not pass through the blood brain barrier. It is 

synthesized from the amino acid L-histidine, that we intake through our diet and 

that gets into the brain through the L-amino acid transporter. L-histidine is 

converted to HA through the enzyme L-histidine decarboxylase. HA is then stored 

into vesicles by VMAT, where it stays until an action potential causes 

depolarization of the neuron and the exocytosis of the vesicles. Once in the 

extracellular space, HA interacts with a variety of receptors and autoreceptors. 

Unlike other neurotransmitters, there is no known mechanism for the reuptake of 

HA back into the neuron. The common belief is that instead of being reuptaken, 

HA is metabolized through two pathways. The first, is by histamine N-

methyltransferase which degrades HA to tele-methylhistamine by a methylation 

process. Tele-methylhistamine is further metabolized by MAO-B to tele-

methylimidazole acetic acid. The second method has HA oxidized to imidazole 

acetic acid by diamine oxidase. In vertebrates, the first method is the primary 

method of HA metabolism and there is little evidence of the second process 

occurring, due to the lack of detection of diamino oxidase in vertebrates. 19 

Release of HA into the extracellular space, causes it to interact with various 

histamine receptors, some of which are present on non-histaminergic neurons. 

This causes the neuromodullatory effects of HA on other neurotransmitters, like 

serotonin. This makes it critical to not only study the histaminergic or the 

serotonergic system exclusively, but to also find a way to study the modulation of 
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histamine on the serotonergic system, and its impacts on disorders that were once 

thought to only be caused by imbalances in the serotonergic system. 

 

 

 

 

 

 

 

 

Figure 1.2. The synthesis, packaging, release, and metabolism of histamine at a 
histamine neuron terminal.15  

 

Serotonin has been associated with a plethora of neurological and 

neuropsychiatric disorders, making the study of the different mechanisms and 

neurotransmitters that control and modulate the neurochemistry of serotonin such 

as histamine of critical importance. A major limitation in this endeavor is the lack 

of analytical tools able to study these two aminergic systems in vivo.   

1.3 TOOLS FOR IN VIVO NEUROTRANSMISSION STUDY 

Each of the different aminergic systems innervates certain regions of the 

brain, and most times, there will be multiple aminergic innervations to the same 

brain region. The hippocampus, for example, which is a brain region most known 

for memory consolidation,21 has innervations from all 4 aminergic systems.22-25 

This makes the brain a heterogeneous environment, that is very difficult to probe. 
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1.3.1 CRITERIA FOR IDEAL IN VIVO MEASUREMENTS  

The brain presents many unique challenges for analytical studies, and any 

analytical method must take into account 4 different criteria to be successful. 

These criteria, which Hashemi first referred to as the four S’s, are size, sensitivity, 

selectivity and speed.1 

The brain is an extremely physically delicate organ that is very sensitive to 

disruption and damage. Inserting a probe into the brain must cause minimal 

damage to avoid destroying cells and activating the brain’s immune mechanisms, 

which would inherently change the local environment surrounding the probe. Thus, 

it is imperative that, first, the probe used is small. Second, the probe needs to be 

sensitive enough to effectively measure analytes present at low concentrations in 

the brain. Molecules in the brain range from picomolar to millimolar in 

concentration. Therefore, depending on the analyte being studied, the technique 

should be able to measure concentration through a wide linear range. Third, due 

to a myriad of substances present, many of which have similar molecular 

characteristics, it is essential that the chosen analytical tool has high selectivity 

to the molecule being measured. If the method is unable to differentiate between 

the molecule of interest and other analytes present, the outcome will not result in 

meaningful data. The final criteria to meet is the speed of measurement. 

Neurotransmission is a process that occurs on a sub-second time scale. 

Accordingly, in vivo measurements need to have high temporal resolution to 

visualize the changes occurring in real-time.  
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In recent decades, various methods have been developed following these 

criteria and employed to achieve a better understanding of the roles and function 

of neurotransmitters in vivo. 

1.3.2 CURRENT ANALYTICAL METHODS FOR NEUROTRANSMITTER 

ANALYSIS 

Different methods have been used to measure different neurotransmitters 

in the brain. Each method was able to further the understanding of the 

neurochemistry of monoamines, such as dopamine and serotonin, but due to the 

difficulty of meeting all 4 criteria mentioned above, it has been challenging to obtain 

a complete picture. Microdialysis, chronoamperometry, optogenetics, etc. are 

methods that have all been used to delve deeper into the chemistry of the brain. 

However, each method is not without limitations.  

1.3.2.1 MICRODIALYSIS SAMPLING 

One of the most common methods employed to monitor neurotransmitters 

is microdialysis (MD). MD is accomplished by implanting a probe with a 

semipermeable membrane (l = 7 - 12 mm; d = 220 - 380 m) into the brain. A 

solution is perfused through the probe, and analytes diffuse across the membrane 

according to their concentration gradient and are collected.26 Importantly, MD is a 

sampling technique that must be coupled to an appropriate analytical method to 

separate and detect analytes of interest. MD possesses inherent limitations, 

namely in temporal and the damage done to the brain by the implantation of the 

probe.  The large size of the MD probe (100 – 500 µm) damages brain tissue.  This 

damage has been well characterized by the Michael group, and results in 
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measurements being performed from damaged, unhealthy tissue.27 In addition, 

most MD measurements are made on a minute time scale, making it hard to study 

neurotransmission, which occurs in milliseconds. This limitation in temporal 

resolution is due primarily to the analysis of MD samples: for offline analysis, the 

temporal resolution of traditional MD is limited by the volume required for handling 

and subsequent analysis; for online analysis, the temporal resolution is limited by 

the flow rate and the analysis time, which is dependent on the analytical instrument 

coupled to MD.26 However, there has been outstanding progress made towards 

answering these limitations, where some research labs are now able to make 

measurements at a second-time scale, through manipulating the dialysate being 

collected. This work was pioneered by the Kennedy group, who improved the 

temporal to 2 s, through the collection of the dialysate in the form of droplets, 

separated by oil, that form over a 2 second period,28 thus overcoming many of the 

limitations of microdialysis analysis.  

There still remains, however, the issue of tissue damage caused by the 

large probes. The Kennedy group has made notable progress in this field through 

the introduction of microfabricated MD probes that are 45 µM in diameter and 180 

µM in length.29 These probes, although smaller, are still large enough to cause 

damage, albeit on a smaller scale than traditional MD probes.27 

1.3.2.2 ELECTROCHEMICAL TECHNIQUES  

1.3.2.2.1 CHRONOAMPEROMETRY 

Chronoamperometry is one of the most common electrochemical methods 

utilized for monoamine analysis. In chronoamperometry, potential is applied to the 
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electrode surface in a square pulse form. The initial potential is selected so that 

the analyte of interest has no redox activity. This potential is then stepped to a 

second potential selected so as to be more positive than the oxidation potential of 

the analyte under investigation. This results in constant oxidation, which generates 

a detectable current, and causes the concentration of analyte at the electrode 

surface to fall to zero, thus creating a concentration gradient and generating a 

decaying current-time trace. When the potential is stepped back, it causes the 

reverse to occur and the oxidized analyte is now reduced.  The decaying current 

profiles of both processes can be used to study the diffusion properties of analytes, 

as well as the release and reuptake of the neurotransmitters in vivo. The ratio of 

oxidation and reduction decay slopes can also be used to somewhat identify the 

analyte being measured.30 Unfortunately, this square pulse waveform generates a 

large capacitative (non-faradaic) current every time the potential is switched. 

Although this current decays within a few milliseconds, it still makes it problematic 

to study the current-time traces generated by this method.31 Most groups have 

found a way around this limitation, by only studying the last 70 – 80% of the current 

– time trace.32 This has been very successful in tissue slices as well as cell studies, 

but to be able to successfully use this method in vivo, higher selectivity is required 

and depending on the ratio of decaying curves is not adequate enough. Thus, to 

overcome this, studies in vivo have used exogenous neurotransmitter injections 

close to the electrode surface so as to insure the identity of measured analyte.30  
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1.3.2.2.2 FAST-SCAN CYCLIC VOLTAMMETRY (FSCV) 

In the early 1980’s FSCV was developed by Millar and Wightman for 

monitoring dopamine in vivo.33,34 This technique employs carbon fiber 

microelectrodes (CFM) with micrometer dimensions (l = 50-150 m; d = 7 m) that 

are implanted into the brain and offer a minimally invasive approach providing 

selectivity, sensitivity, and biocompatibility.2 Owing to its high temporal and spatial 

resolution, FSCV was able to uncover mechanistic details about dopamine 

neurotransmission. More recently, the Hashemi lab has been able to advance 

FSCV to various new frontiers, and are pioneers for using this method for serotonin 

and histamine analysis.2,10 In addition, we were the first to extend FSCV to metal 

ions, specifically Cu(II) and Pb(II) speciation studies.35,36 

FSCV requires a set of instructions, known as a waveform, be applied to 

the CFM. This waveform is optimized for the selective detection of the analyte to 

be studied. It is applied at high scan rates, meaning that data is collected within 

milliseconds. The waveform typically consists of an anodic wave, a cathodic wave, 

and a resting potential as seen in the serotonin waveform, developed by Brad 

Jackson et al. in the mid 90s, depicted in Figure 1.1A.37  

During the anodic sweep, the analyte undergoes oxidation at its oxidation 

potential (left to right on Figure 1.1B). Likewise, during the cathodic wave the 

analyte will be reduced at its reduction potential (right to left on Figure 1.1B). The 

resting potential between waveform application allows for the maximum adsorption 

of the analyte to the carbon fiber surface. 
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Figure 1.3. (A) The serotonin waveform applied at a 1000 V/s and 10Hz. The 
anodic sweep in this waveform is 0.2 to 1.0 V, while the cathodic sweep is 1.0 to 
-0.1 V, and the resting potential is 0.2 V. (B) Serotonin’s 2 electron, 2 proton 
redox reaction. 

 

The electron transfer process occurring at the carbon fiber’s surface 

produces a faradaic current through the CFM, as seen in Figure 1.1B for 

serotonin. The current generated is detected and subsequently plotted versus 

applied voltage, to create a cyclic voltammogram (CV).  A CV is analyte specific 

(in a given media) due to the analyte’s unique oxidation and reduction potential. 

Thus, it is possible to qualitatively determine the analyte being measured from 

studying the CV.  

Waveforms are applied at fast scan rates that range from 100 V/s to 106 

V/s, whereas classic cyclic voltammetry typically scans at or below 1 V/s. These 

fast scan rates provide FSCV with the temporal resolution required to perform sub-

second measurements. However, fast scan rates also produce a large capacitative 

current (or non-faradaic current) that is many times larger than the faradaic current 

of interest. To successfully measure the faradaic current, the non-faradaic current 

(or background) must be subtracted from obtained current. Thus, FSCV is a 
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background-subtracted technique, which creates the main limitation of FSCV, in 

that it only detects concentration changes. Particularly for neurotransmitters, this 

limitation translates into requiring the stimulated release of a given molecule for 

analysis. This requirement makes it impossible to analytically determine the 

analyte’s ambient level. Even with this limitation, FSCV is still able to provide a 

wealth of information about neurotransmitters, such as release and reuptake 

mechanisms, making it a powerful tool for in vivo studies.  

In FSCV, a single CV is collected in a few milliseconds, thus to obtain a 

more complete picture, multiple CVs are collected over a 30 s period. The CVs are 

then aligned together to generate a color plot, which is a 3D compilation of the data 

that can also be viewed as a 2D plot (Figure 1.2A). Using the color plot generated, 

a horizontal strip can be extracted to generate a current vs. time (i-t) plot, hence 

enabling us to quantitatively study the analyte, as can be seen in Figure 1.2B. CVs 

can also be re-generated through the extraction of vertical strips from the color 

plot. The green event at 0.7 V in Figure 1.2A represents serotonin oxidation, 

whereas the blue event at around 0.0 V represent the serotonin reduction. 

Calibrations are then used to convert current into concentration, and as a result, 

the analyte’s concentration changes over time can be monitored.  

1.3.3 THE NEED FOR AMBIENT LEVEL MEASUREMENTS 

As mentioned above, FSCV is able to provide valuable information about 

the dynamics of neurotransmission, provided that a change is first introduced to 

the system. In vivo we induce this change occurs via electrical stimulation. 

However, due to background subtraction ambient levels cannot be determined. 
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This level is critical for better understanding the mechanisms that control 

extracellular serotonin levels. In 2015, Atcherley et al. developed a method 

capable of measuring ambient levels of dopamine in vivo, and coined the 

technique fast-scan controlled adsorption voltammetry (FSCAV).38  

 

 

 

 

 

 

 

Figure 1.4. (A) 2D depiction of a representative color plot. Inset displays a current 
– voltage (CV) plot extracted from the white vertical dashed line. The green event 
at 0.7 V represents serotonin oxidation. The blue event around 0 V represents 
serotonin reduction. (B) Representative current versus voltage extracted from the 
horizontal dashed line in A. Blue rectangular bar represents period of electrical 
stimulation (2 s). 

FSCAV depends on controlled adsorption to measure basal levels of 

analytes. It is performed by applying a waveform at a high frequency for 2 seconds 

followed by a period of controlled adsorption, where the potential is held at a 

constant value that maximizes adsorption of a specific molecule to be measured, 

onto the CFM surface. After adsorption, the waveform is reapplied, causing the 

rapid oxidation and reduction of all the analyte adsorbed onto the electrode 

surface. The redox reaction generates a current which is measured and converted 
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to concentration, allowing for the basal concentration value to be determined.38,39 

This process can be seen in Figure 1.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. The stages of FSCAV: first minimized adsorption followed by controlled 
adsorption and finally reapplication of waveform, where data is collected through 
oxidation of analyte. 

In this dissertation, FSCAV will be expanded to include the analysis of 

serotonin in various different brain regions of the mouse. 

1.4 SCOPE OF THE DISSERTATION 

This dissertation will first start by introducing how FSCAV was developed 

for ambient serotonin measurements in vivo. Next, it will describe the 

characterization of two new voltammetric circuitries; namely the hippocampus 
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(CA2 region) and the prefrontal cortex (pFc). These are areas with serotonin 

innervations that have been linked to psychiatric illnesses such as Alzheimer’s 

disease, depression, and schizophrenia, among many others. The next focus was 

histamine, where in vivo measurements of histamine were made in the 

hypothalamus region, specifically the premammillary nucleus. Subsequently, we 

moved to study the histamine modulation of serotonin within the same region. The 

work done in this dissertation introduces new possibilities in the study of serotonin, 

allowing us now to look at the different facets of serotonin neurotransmission, and 

introducing modulation factors, that presents new targets to pharmaceutical 

agents. 

The scope is outlined by chapter below: 

Chapter 1: Introduction 

Chapter 2: This chapter describes the development of fast-scan controlled 

adsorption voltammetry for ambient, extracellular serotonin measurements that is 

sensitive, selective, and stable both in vitro and in vivo. The signal is confirmed in 

vivo, both electrochemically and pharmacologically, in addition to developing a 

statistical model (in collaboration with statisticians) to allow for more accurate 

analysis of in vivo data, specifically the pharmacological administrations.   

Chapter 3: In this chapter two new voltammetric stimulation circuitries are 

characterized for serotonin. In vivo serotonin FSCV has previously focused on 

measurements in the SNr with dorsal raphe nucleus (DRN) or MFB stimulation. 

The SNr was chosen because of the dense innervation of serotonin. It was vital 

however to shed light on other brain areas because of their implications in specific 
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diseases. In this chapter, evoked (FSCV) serotonin was measured specifically in 

the mouse prefrontal cortex and hippocampus which are important in a variety of 

disorders including depression, autism spectrum disorder, and addiction. 

Furthermore, triple staining immunohistochemistry with single-photon microscopy 

was performed to visualize the SERTs density in these discrete localities. Finally, 

FSCAV was utilized to measure ambient serotonin levels in both regions to 

determine effects of SERT density on basal levels.  

Chapter 4: This chapter describes the optimization of a FSCV waveform for 

HA detection. In vitro experiments were performed to verify stability, selectivity, 

and sensitivity of HA measurements over other common analytes. In vivo 

measurements were collected in the premammillary nucleus, with stimulation in 

the medial forebrain bundle. Pharmacological manipulations were carried out to 

ascertain that it was a robust HA signal.  

Chapter 5: This section describes in vivo measurements performed to 

demonstrate histamine modulation of serotonin and to determine the histamine 

receptor responsible for this modulation, through pharmacological intervention. 

Additionally, a mathematical model was generated to further our understanding of 

this modulation. 

Chapter 6: Conclusions and future directions. This section summarizes the 

work carried out towards my PhD along with the future work that will be carried out 

based on my findings.  
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CHAPTER 2: IN VIVO AMBIENT SEROTONIN MEASUREMENTS 
AT CARBON-FIBER MICROELECTRODES 

 

 

 

 

 

 

 

Reprinted with permission from Analytical Chemistry 

Abdalla, A., Atcherley, C. W., Pathirathna, P., Samaranayake, S., Qiang, B., Peña, 

E., Morgan, S. L., Heien, M. L., Hashemi, P., In Vivo Ambient Serotonin 

Measurements at Carbon-fiber Microelectrodes. Anal Chemistry 2017, 89 (18), 

9703 – 9711

 



www.manaraa.com

 23 

2.1 ABSTRACT 

The mechanisms that control extracellular serotonin levels in vivo are not 

well-defined. This shortcoming makes it very challenging to diagnose and treat the 

many psychiatric disorders in which serotonin is implicated. Fast-scan cyclic 

voltammetry (FSCV) can measure rapid serotonin release and reuptake events but 

cannot report critically important ambient serotonin levels. In this paper, we use 

fast-scan controlled adsorption voltammetry (FSCAV), to measure serotonin’s 

steady-state, extracellular chemistry. We characterize the ‘Jackson’ voltammetric 

waveform for FSCAV and show highly stable, selective, and sensitive ambient 

serotonin measurements in vitro. In vivo, we report basal serotonin levels in the 

CA2 region of the hippocampus as 64.9 nM ± 2.3 nM (n=15 mice, weighted 

average ± standard error). We electrochemically and pharmacologically verify the 

selectivity of the serotonin signal. Finally, we develop a statistical model that 

incorporates the uncertainty in in vivo measurements, in addition to electrode 

variability, to more critically analyze the time course of pharmacological data. Our 

novel method is a uniquely powerful analysis tool that can provide deeper insights 

into the mechanisms that control serotonin’s extracellular levels. 

Keywords 

Fast-scan controlled adsorption voltammetry (FSCAV), fast-scan cyclic 

voltammetry (FSCV), hippocampus (CA2), basal, baseline, tonic, extracellular, 

steady state, 5-HT 
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2.2 INTRODUCTION 

Dysfunctions of the serotonin system are thought to underlie numerous 

neuropsychiatric disorders such as depression, anxiety, and schizophrenia.1-3 A 

better interpretation of serotonin neurochemistry is crucial for understanding the 

roles of this neurotransmitter but insight into serotonin’s chemistry has been limited 

by the difficulty of in vivo chemical measurements. Serotonin is particularly 

challenging to detect electroanalytically in vivo because of an inauspicious 

combination of low extracellular concentrations and the propensity of serotonin and 

serotonin metabolites to foul electrodes.4  

In 2009, we optimized fast-scan cyclic voltammetry (FSCV) for 

measurement of endogenous serotonin release and reuptake in vivo using carbon 

fiber microelectrodes (CFMs).5 Since then, we have uncovered various important 

aspects of serotonin neurochemistry. For example, evoked serotonin release is 

under much tighter regulation than dopamine (DA),6 being subject to prolonged 

autoreceptor control and multiple reuptake mechanisms.7 Furthermore, a single 

dose of a selective serotonin reuptake inhibitor (SSRI) rapidly alters serotonin 

neurochemistry;8 an important finding because a chronic SSRI regimen must often 

be followed for clinical therapy.2 

While FSCV continues to provide important insights into the mechanisms 

that regulate extracellular in vivo serotonin, the method has limitations. In 

particular, because FSCV is background-subtracted, it only reports information 

about concentration changes. These changes allow us to probe serotonin release 
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and reuptake, however it would be invaluable to also determine serotonin’s 

ambient (steady-state, extracellular or basal) concentrations. 

There are very few methods that can quantitatively measure extracellular 

serotonin concentrations. By far, the most commonly used method is microdialysis 

which reports extracellular serotonin levels in the lower nanomolar range.9-13 We 

thus sought to design a reliable and accurate method for measuring serotonin’s 

ambient concentrations with our carbon fibers, that we could couple to our FSCV 

measurements. 

We recently made basal measurements of dopamine with fast-scan 

controlled-adsorption voltammetry (FSCAV), which exploits the adsorption 

capabilities of activated CFMs. The method is robust, selective, fast, and sensitive 

with the additional allure that CFMs measure from discrete brain localities14 where 

tissue damage is minimized.15 Our studies revealed a fundamental coaction 

between evoked and ambient dopamine.16 Here, we orient this method towards 

serotonin. 

We find that unique FSCAV serotonin signals (that resemble FSCV 

responses) are stable during repeated recordings over 120 minutes in vitro. We 

confirm that the majority of interfering analytes are unlikely to contribute to the 

serotonin FSCAV signal, bar serotonin’s major metabolite, 5-hydroxyindoleacetic 

acid (5-HIAA) which gives a small signal at high concentrations. Subsequently we 

show that 5-HIAA is unlikely to contribute to the signal when at physiological 

concentrations. Next, our method is utilized to report ambient, in vivo serotonin 

levels in the mouse hippocampus as 64.9 nM ± 2.3 nM (n = 15 mice, weighted 
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average ± standard error) using a functional linear statistical model that we 

developed based on electrode and in vivo variability. Using a pharmacological 

approach, the in vivo signal is validated and interferences by 5-HIAA, dopamine, 

and norepinephrine17-21 are disqualified. Finally, we take a closer statistical look at 

the time course of the pharmacological data using a chemometric approach 

incorporating the uncertainty inherent to in vivo recordings as well as the variability 

between CFMs to show that the drug response is significant earlier than shown by 

conventional statistical tests.   

Accurate measurements of ambient serotonin are essential for establishing 

serotonin’s physiological impact and here we present an ideal tool and analyses 

for this measurement. Furthermore, FSCV and FSCAV can be combined at a 

single sensor, providing the distinctively powerful analytical capability of measuring 

both phasic and ambient serotonin. 

2.3 EXPERIMENTAL SECTION 

Solutions 

Dopamine hydrochloride, serotonin hydrochloride, 5-hydroxyindole acetic 

acid, ascorbic acid, 3,4-dihydroxyphenylacetic acid, uric acid, norepinephrine 

hydrochloride, hydrogen peroxide, adenosine, histamine hydrochloride, pargyline 

hydrochloride, desipramine hydrochloride, and GBR 12909 were purchased from 

Sigma Aldrich (St. Louis, MO). LiquionTM (LQ-1105, 5% by weight Nafion®) was 

purchased from Ion Power Solutions (New Castle, DE). Buffer solution was 

composed of 15 mM Tris, 126 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 2.0 mM 
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NaH2PO4, 1.2 mM Na2SO4, 1.2 mM CaCl2, and 2.0 mM MgCl2 (all purchased from 

Sigma Aldrich (St. Louis, MO)).    

Carbon-Fiber Microelectrodes 

The carbon-fiber microelectrodes were assembled by aspirating a single T-

650 carbon fiber (7 μm, Goodfellow, Coraopolis, PA) into cylindrical glass 

capillaries (internal diameter: 0.4 mm, external diameter: 0.6 mm, A-M Systems, 

Carlsborg, WA). The carbon filled capillaries were positioned vertically in a pipette 

puller (Narishige Group, Setagaya-Ku, Tokyo, Japan) to form a carbon – glass seal 

under gravity. The carbon fibers were then cut to approximately 150 μm in length. 

Nafion solution (Liquion-1105-MeOH, Ion Power, DE) was electrodeposited on the 

exposed carbon fibers as previously described.5 The microelectrode was dried at 

70° for 10 minutes.  

Data Collection  

FSCV and FSCAV were performed using software (WCCV 3.05) and 

instrumentation developed by Knowmad Technologies LLC (Tucson, AZ). FSCAV 

was performed using a CMOS precision analog switch, ADG419 (Analog Devices) 

to control the application of the computer-generated waveform to the electrode. 

The logic was controlled programmatically and either a series of ramps (0.2 V to 

1.0 V to -0.1 V to 0.2 V, scan rate = 1000 V/s) was applied every 10 ms (100 Hz), 

or a constant potential (0.2 V) was applied to the electrode for a specified period 

(10 s) (controlled adsorption period).    
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Flow Injection Analysis 

FSCV in vitro analyses were performed using flow injection analysis (FIA). 

CFMs were placed into a flangeless short 1/8 nut (PEEK P-335, IDEX, Middleboro, 

MA) with 2 mm of the tip exposed from the nut. The microelectrode-containing nut 

was fastened into a modified HPLC union (Elbow PEEK 3432, IDEX, Middleboro, 

MA). The other end of the elbow union was secured into the out-flowing stream of 

the FIA buffer. Two holes were drilled into the union to incorporate a reference 

electrode and a ‘waste’ flow stream. The flow was maintained using a syringe 

infusion pump (kd Scientific, model KDS-410, Holliston, MA) at a rate of 2 mL min-

1. Serotonin was introduced using a rectangular pulse into the flow stream for 10 s 

through a six-port HPLC loop injector (Rheodyne model 7010 valve, VICI, 

Houston, TX).  

Data Analysis 

FSCV and FSCAV signals were processed using software written in-house 

using LabVIEW 2009. The processing includes filtering, smoothing, and signal 

deconvolution. For FSCAV, the cyclic voltammogram (CV) of the 3rd scan (after 

controlled adsorption period) was extracted and the peak that occurred between 

approximately between 0.4V to 0.85V was integrated. The resulting charge value 

in pC was plotted vs. serotonin concentration to create calibration curves which 

were then utilized to report in vivo values. 

Statistical Analysis 

Based on the calibration data, linear models relating charge with both 

concentration and different electrodes were developed. These linear models 
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incorporated interactions between the concentration and the electrode to 

accommodate for the inherently varying responses between electrodes.22,23 These 

models allow different intercept and slope in the linear relationship between charge 

and concentration for each electrode. The fitting was performed using linear model 

via the lm command in the R programming package. The results show significant 

differences in the intercept and slope for each electrode (Figure S-1 in 

Supplementary information). Using these fitted linear models and given charge 

measurements collected in vivo at successive time points, estimates of the 

concentration levels at each time point were obtained. This was done by ̀ inverting’ 

the fitted linear relationship between concentration and charge, and a weighted 

pooling of the concentration estimates from each of the electrodes was performed 

to obtain an overall concentration level estimate at each time point. The weights 

are based on the inverse of the estimated variance of the concentration estimates. 

Point-wise confidence intervals (CI) were constructed by fitting the functional 

model to the time and concentration values. These 95% point-wise confidence 

intervals were constructed when the functional model was fitted to the pairs of time 

and concentration values using the predict.lm command in the R package. 

Exclusion Criteria 

FSCV was performed before FSCAV collection in vivo to verify the presence 

of serotonin. CVs collected during an evoked response in mice were compared 

with previously well-established signals.5 Mice in which the CVs did not match the 

characteristics of a serotonin CV were excluded from this study. Furthermore, mice 
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that died before the end of the collection time were excluded. All other mice were 

included in this study.  

Animal Surgeries 

6 – week old male C57BL/6J mice, 20-25 g, were purchased from Jackson 

Laboratories (Bar Harbor, ME). The mice were housed in 12-h light/dark cycles 

and were offered food and water ad libitum. Animal care and procedures were in 

agreement with the Guide for the Care and Use of Laboratory Animals, accepted 

by the Institutional Animal Care and Use Committees (IACUC) of the University of 

South Carolina. After an intraperitoneal (i.p.) injection of the anesthetic urethane, 

(25% dissolved in 0.9% NaCl solution, Hospira, Lake Forest, IL) at a volume of 7 

μL per 1 g mouse weight, stereotaxic surgeries (David Kopf Instruments, Tujunga, 

CA) were performed. A heating pad from Braintree Scientific was used to maintain 

ideal mouse body temperature of 37° C. Bregma was used as a reference for 

stereotaxic coordinates of Medial Forebrain Bundle (MFB) [APL: -1.58, ML: +1.0, 

DV: -4.8 to   -5.0] and CA2 [AP: -2.9, ML: +3.35, DV: -2.5 to -3.0] from Franklin and 

Paxinos (2008). In order to access the CA2 and MFB, holes were drilled in 

accordance to the stereotaxic coordinates. A stainless-steel electrode (diameter 

0.2 mm; Plastics One, Roanoke, VA) was implanted into the MFB for stimulation. 

The nafion coated CFM was then lowered into the CA2. A silver wire (diameter: 

0.010 in; A-M Systems, Sequim, WA), electroplated with chloride by immersion of 

the wire in hydrochloric acid (0.1 M, 4 V vs. tungsten), was implanted into the 

opposite hemisphere of the CA2 electrode placement. A 60 Hz biphasic 350 μA, 

120 pulse stimulation, 2 ms per phase was employed through linear constant 
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current stimulus isolator (NL800A Neurolog; Digitimer Ltd.). All drugs were 

administered i.p.; Pargyline at a dose of 75 mg kg-1 and GBR 12909 at a dose of 

15 mg kg-1, both dissolved in 90% saline and injected at a volume of 0.1ml 20g-1.  

2.4 RESULTS AND DISCUSSION 

Serotonin FSCAV 

A robust analytical measurement of ambient serotonin would lend nuance 

to our understanding of this complex neurotransmitter. Researchers have 

conventionally relied on microdialysis for basal measurements; however, it is 

greatly desirable to us to measure this ambient concentration at CFM’s. Because 

FSCV relies on background-subtraction to remove a large charging current, FSCV 

could not, until recently, report basal neurotransmitter concentrations.  We recently 

described a novel modification to the FSCV technique that allowed us to measure 

ambient in vivo DA levels, which we coined FSCAV.16 FSCAV is similar in concept 

to adsorptive stripping voltammetry whereby analytes adsorb onto the electrode 

surface for a controlled period of time before electrochemical characterization. We 

utilize the terminology ‘ambient’ to denote a measurement made at a temporal 

resolution (20 s) that is neither on the same scale as FSCV (milliseconds) or 

microdialysis (minutes). The temporal scale of FSCV allows it to measure phasic 

changes whereas microdialysis can measure tonic or basal changes in the brain. 

Conversely, FSCAV is an average of both. Here, FSCAV was applied to serotonin 

analysis. 

Electrochemical measurements of serotonin are fundamentally challenging 

because of serotonins’ and serotonin metabolites’ detrimental effects on the 
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electrode surface. In 1995, Jackson et al. developed a solution for electrode fouling 

for serotonin measurements by developing a waveform, at a very high scan rate, 

to ‘outrun’ fouling reactions.4 The ‘Jackson waveform’ was later combined with an 

electrodeposited Nafion coating on the CFM for in vivo serotonin FSCV.5 We 

therefore applied the Jackson waveform (0.2 V to -0.1 V to 1.0 V to 0.2 V, 1000 V 

s-1) to a Nafion coated CFM for in vivo serotonin FSCAV (100 Hz) with a 10 s 

controlled adsorption period. 

Figure 2.1A(i) shows a color plot of 100nM serotonin collected in vitro with 

FSCV using the Jackson Waveform at 10Hz. Figure 2.1A (ii) shows a color plot 

of 100 nM serotonin in vitro with FSCAV using the same waveform at 100Hz. The 

black area in Figure 2.1A (ii) is the controlled adsorption period, and the CV taken 

at the 3rd scan (denoted by star) after waveform re-application is shown in Figure 

2.1B. Importantly, this CV contains peaks characteristic of serotonin’s redox 

potentials.4,5 This CV is superimposed onto a CV taken from an FSCV color plot 

(denoted by star). The orange lines illustrate the integration limits used for FSCAV 

analysis (see experimental section). The CVs show good agreement, with the 

exception of a slight potential shift in the FSCAV signal which we attribute to the 

higher waveform application frequency (100 Hz vs 10 Hz for FSCV).24 

Second, we identified 9 electroactive species in the hippocampus that could 

potentially interfere with the FSCAV signal.18,25-32 
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Figure 2.1. (A) Representative FSCV (i) and FSCAV (ii) color plots of 100nM 
serotonin in vitro. B) Cyclic voltammograms extracted from the vertical dashed 
lines in A(i) and A(ii) after normalization (current / maximum current). Vertical 
orange dashed lines represent integration limit. 

Figure 2.2. Repeated FSCAV measurements over 120 minutes in 100 nM 
serotonin (n=4 electrodes ± SEM) 
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Figure 2.3 shows CVs collected from these different species at 

concentrations that mimic a range of reported or predicted physiological 

values.4,5,16,24,29,33-39 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. CVs for HA (1 µM), adenosine (1 µM), DOPAC (2 µM), NE (1 µM), UA 
(1 µM), DA (100 nM), AA (200 µM), H2O2 (1 mM) and 5-HIAA (10 µM). Vertical 
dashed lines represent integration limits utilized for serotonin analysis. 

We applied the integration limits for serotonin analysis (+0.4 V to +0.85 V) 

and analyzed these CVs. Histamine (HA) (1 µM), adenosine (1 µM), DOPAC (2 

µM), norepinephrine (NE) (1 µM), uric acid (UA) (1 µM), DA (100 nM), ascorbic 

acid (AA) (200 µM), and hydrogen peroxide (H2O2) (1 mM) showed no significant 
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features within the serotonin integration limits (n=4). 5-HIAA (10 µM)5 could prove 

problematic due to the presence of a peak within the integral limits. 

We show that 5-HIAA interference is unlikely in Figure 2.4. In this Figure, 

charge is plotted against concentration for serotonin (orange). Here, the linear 

portion of the serotonin calibration is shown with orange markers with the following 

linear regression: 

        y=0.0207 (± 0.0005) x + 1.51(± 0.14), R2 = 0.997  (1) 

The serotonin plot shows linearity up to 600 nM, with a sensitivity of 0.021 

± 0.0005pC nM-1 (n=4 ± SEM), and a limit of quantification of 5 nM. When both 

serotonin and 5-HIAA are present in solution, we postulate that there is a 

competition for adsorption sites on the carbon fiber surface. The rationale here is 

that the analyte with higher adsorption equilibrium constant (Kads) on the CFM will 

exhibit a more favorable thermodynamic adsorption profile and will thus 

outcompete the other.40 A Langmuir monolayer adsorption isotherm model was 

used with FSCAV data to calculate Kads for serotonin and 5-HIAA. Kads for serotonin 

and 5-HIAA were 9.57 x 1010 and 7.02 x 108, respectively. The much higher Kads 

for serotonin adsorption onto CFMs means that 5-HIAA added to serotonin does 

not affect the signal as shown in the inset in Figure 2.4. The green stars signify a 

separate data set where approximately 100x more concentrated 5-HIAA was 

added to the serotonin solution and the blue markers show the signal. The close 

agreement of the blue and orange markers make it clear that 5-HIAA, at 

physiological concentrations (typically 10 µM),41 would not impact the signal. In 
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addition to favorable adsorption, the much improved sensitivity for serotonin vs. 5-

HIAA can be credited to Nafion on the CFM.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Serotonin selectivity curve (n=4 electrodes  SEM). Inset shows linear 
serotonin range (orange markers), The green stars represent the addition of 5-
HIAA to serotonin. All blue markers represent serotonin / 5-HIAA mixture with 5-
HIAA being a 100 times the serotonin concentration.  All inset calibrations are n=4 

electrodes  SEM. 
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In Vivo Serotonin FSCAV 

To apply FSCAV to in vivo serotonin measurements, we first employed a 

retrograde stimulation of the Medial Forebrain Bundle (MFB) and confirmed 

electrically stimulated serotonin release in the CA2 region of the mouse 

hippocampus (example of evoked release can be seen in Figures 2.6 and 2.7). 

Subsequently FSCAV was performed at the same electrode. Figure 2.5A shows 

the in vivo FSCAV color plot (i) adjacent to a color plot of 100 nM serotonin in vitro 

(ii). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. (A) Representative FSCAV color plots of serotonin in vivo (i) and in 
vitro (ii). (B) CVs extracted from the 3rd scan indicated by vertical dashed lines in 
A(i) and A(ii). Inset shows ambient serotonin measurements in CA2 region of 
mouse hippocampus. Grey markers represent individual mice and orange marker 
represents weighted averaged response (n=15 mice ± standard error). 
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The close agreement of the CVs shown in Figure 2.5B is strong evidence 

that this signal is serotonin. We took a chemometric approach to report the 

concentration in vivo with uncertainty that incorporated not only in vivo variability 

but also the variability of individual electrodes. These variations occur mainly due 

to the non-uniformity between carbon fiber surfaces that arise as a result of the 

fabrication process. A linear functional model was developed using the calibration 

data of the different electrodes used in the in vivo experiments. In 15 mice, the 

weighted average extracellular serotonin level was 64.9 nM ± 2.3 nM (n = 15 mice, 

weighted average ± standard error) (see inset in Figure 2.5B). 

Previous reports of ambient serotonin with microdialysis in different brain 

regions have estimated extracellular serotonin in low nanomolar to 10’s of 

nanomolar. 9-13  Our value is slightly above this range. Our method is performed 

on a fundamentally different spatial scale. For example, commercial microdialysis 

probes typically have a diameter of 200 µm and are 2 mm in length, whereas CFMs 

are 7 µm in diameter and 150 µm in length. The tissue volume impacted by a CFM 

is orders of magnitude smaller than that of a typical microdialysis probe,15 and 

because we optimize the electrode’s placement based on stimulated serotonin 

release, the electrode is in a ‘hot spot’ (area of high serotonin activity), accounting 

for slightly higher levels. 

Above, we assessed FSCAV’s selectivity in vitro, however, the in vivo matrix 

is far more complicated than can be reproduced on the bench. It is therefore critical 

to verify the signal pharmacologically in vivo. For this task, we employed pargyline 

(75 mg kg-1), an irreversible monoamine oxidase B (MAO-B) inhibitor. By inhibiting 
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MAO-B, and hence the metabolism of serotonin in the brain, an increase in 

serotonin and a decrease in 5-HIAA is expected.42,43 Figure 2.6 shows 

experiments that test the effects of pargyline on the FSCAV signal. First, FSCV 

was used to optimize the position of the CFM by evoking serotonin release (a 

representative example color plot is shown inset on the top left). Individual animal 

FSCAV responses (faint blue makers) and the averaged response (dark blue dots) 

60 min before and 60 min after an i.p. injection of pargyline are shown on the 

central trace. Using conventional statistical analysis, pargyline administration 

caused a significant increase in the FSCAV signal at 29 min and thereafter (two 

way repeated measures anova: p<0.0001, n=5 mice ± SEM with Dunnett’s multiple 

comparison post hoc, p<0.01, n=5 mice ± SEM). The effects of pargyline were 

verified with FSCV following FSCAV data collection (inset top right color plot is a 

representative color plot and [serotonin] vs. time traces pre (⍺; pre and β:post 

drug)), where pargyline increased evoked serotonin amplitude and reduced the 

rate of reuptake as previously seen in rats.6 This experiment eliminates the 

possibility of 5-HIAA interference and would verify our signal as serotonin, save for 

one final concern; that DA and NE are also substrates for MAO-B 44,45 and are 

present at appreciable levels in the CA2 region of the hippocampus.17,19-21 

Very little sensitivity was established in vitro for DA or NE. To further verify 

no interference from DA we administered GBR 12909, a potent DA transporter 

inhibitor, to a separate set of mice. We have previously shown that GBR 12909 

causes an increase in ambient DA,16 but not in evoked serotonin levels.5 
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Figure 2.6. Faint blue markers represent individual mouse responses to i.p. 
Pargyline (75 mg kg-1) and faint red markers represent individual mice responses 
to i.p. GBR 12909 (15 mg kg-1). Files were collected 60 minutes before and after 
drug administration. Dark blue dots represent averaged Pargyline response (n=5 
mice ± SEM) and dark red dots represent averaged GBR 12909 response (n=5 
mice ± SEM). Yellow bar at 0 min is injection time. Representative FSCV color 
plots and CVs before and after FSCAV file collection are inset (top – Pargyline, 
bottom – GBR 12909). White bars at bottom of color plot denotes stimulation (2s). 
Inset center are [serotonin] vs. time traces taken from color plots). Red bars below 
[serotonin] vs. time is the stimulation. (∗ above solid blue markers indicate post 

hoc test, ∗p<0.05, ∗∗∗∗p<0.0001). 

The faint, red markers in Figure 2.6 show individual FSCAV animal 

responses to 15 mg per kg GBR 12909, while the dark red dots show the averaged 

responses 60 min before and after i.p. administration (n=5 mice ± SEM). As above, 

FSCV was used to assess the effects of this manipulation on the evoked serotonin 

response. The lack of an increase in the FSCAV signal (two way repeated 

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

0

20

40

60

80

100

120

Time (min)

C
o

n
c
e
n

tr
a
ti

o
n

 (
n

M
)

0.2

Current / nA

V
 v

s
. 
A

g
 /
 A

g
C

l

-1.6

0

1.6
0

4

-3
Current / nA

1.0

0.2

-0.1

0.2

Pargyline Average (n=5 ± SEM)

GBR Average (n=5 ± SEM)

GBR (Individual mice)

Pargyline (Individual mice)

V vs. Ag / AgCl

C
u

rr
e

n
t 

(n
A

)
30 seconds

0

4

-3

1.0

0.2

-0.1

V
 v

s
. 
A

g
 /
 A

g
C

l

-1.6

0

1.6

V vs. Ag / AgCl

V
 v

s
. 
A

g
 /
 A

g
C

l

C
u

rr
e

n
t 

(n
A

)

1.0

0.2

-0.1

0.2

Current / nA

0

4

-3
-1.6

0

1.6

V vs. Ag / AgCl

0

5

10

15

20

25

C
o

n
c
e
n

tr
a
ti

o
n

 (
n

M
)

V
 v

s
. 
A

g
 /
 A

g
C

l

Current / nA

C
u

rr
e

n
t

(n
A

)

C
u

rr
e

n
t 

(n
A

)

1.0

-0.1

0.2

0

4

-3

V vs. Ag / AgCl
-1.6

0

1.6

0.2

30 seconds

0

10

20

30

C
o

n
c
e
n

tr
a
ti

o
n

 (
n

M
)

C
u

rr
e

n
t 

(n
A

)

C
u

rr
e

n
t 

(n
A

)
C

u
rr

e
n

t 
(n

A
)

C
u

rr
e

n
t 

(n
A

)
-0.2       0.2     0.6       1

-0.2       0.2      0.6      1 -0.2       0.2      0.6      1

-0.2       0.2      0.6      1



www.manaraa.com

 41 

measures anova, p>0.05, n=5 mice ± SEM with Dunnett’s multiple comparison 

post hoc, p>0.05, n=5 mice ± SEM) and FSCV signal allows us to exclude DA as 

interference.  

Figure 2.7. Faint green markers represent individual mice responses and dark 
green dots represent averaged response to i.p. Desipramine (15 mg kg-1) (n=5 
mice ± SEM). Files were collected 60 minutes before and after drug administration. 
Yellow bar at 0 min is injection time. Representative FSCV color plots and CVs 
before and after FSCAV file collection are inset. White bars at bottom of color plot 
denotes time of stimulation (2s). Inset center are representative [serotonin] vs. time 
traces of evoked serotonin response before (black) and after (green) drug 
administration. Red bars below [serotonin] versus time is stimulation period (2s). 

To eliminate the possibility of interference from NE, we administered 

desipramine (15 mg kg-1) to a separate set of mice. Desipramine is a 

norepinephrine transporter (NET) inhibitor that selectively blocks NETs but has 

negligible effect on DA or 5HT transporters.46,47 The faint green, markers in Figure 

2.7 represent the individual FSCAV responses, while the dark green dots represent 

the averaged response 60 minutes before and after i.p. drug administration (n=5 
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mice ± SEM). Injection is immediately before first data point at 0 min (yellow bar). 

FSCV color plots and CVs taken before and after FSCAV data collection from a 

representative experiment are inset. There was no change in the FSCAV signal 

(two way repeated measures anova, p>0.05, n=5 mice ± SEM with Dunnett’s 

multiple comparison post hoc, p>0.05, n=5 mice ± SEM). There was no increase 

in the release amplitude as measured with FSCV, however there was a dramatic 

dip below baseline after stimulation. We previously showed that dips such as this 

were mediated by prolonged autoreceptor activation7 and because desipramine 

has agonist activity at the 5H1B receptor, 48,49  it is likely we are observing a 

potentiation of the autoreceptor effect. This experiment allows us to exclude 

norepinephrine as a possible interference.  

Conventional statistical tests (two way repeated measures anova with 

Dunnett post hoc test) show that the serotonin levels increase significantly 29 

minutes after pargyline administration. However, visually it is seen that the 

serotonin levels begin to rise much earlier than that. To address this, we expanded 

the fitted linear model to encompass the concentration values prior to and post 

pargyline, GBR 12909, and desipramine administration. The equations of the 

model were as follows,     

    Serotonin/Pargyline: C(t) = 65.217+ 0.0041*t + 0.5268*[max (0, 62.6-t)] - 0.0042*[max (0, 62.6-t)]2    (2) 

    Serotonin/GBR12909: C(t) = 58.82 + 0.0055*t - 0.000088*t2   (3) 
 

    Serotonin/Desipramine: C(t) = C(t) = 71.54 + 0.0013*t - 0.000004*t2  (4) 
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where C(t) is change in concentration with time, t is time and max (a, b) is the 

larger value between a and b. The fitted model (blue line) over the averaged 

serotonin data (black dots) with pargyline, GBR 12909, and desipramine 

administration is seen in Figure 2.8A, B and, C respectively.  

 

Figure 2.8. Files were collected 60 minutes before and after (A) Pargyline, (B) 
GBR 12909, and (C) Desipramine administration. Circles represent averaged 
serotonin response (n=5 mice ± 95% CI). Vertical grey lines represent 95% 
confidence intervals, and the blue line is the fitted model. Red vertical line in A 
represent point of change after drug administration, i.e. 2.60 minutes.  

 

For pargyline, the functional continuous model consisted of a linear part 

over the time portion where no drugs were administered plus a time lag Delta (0 to 

60+Delta) and is parabolic over the time interval from 60+Delta to 120 (Figure 

2.8A). Using this model, the estimate for this time lag Delta or simply the time point 

where the drug causes a change in the slope is 2.60 minutes.  This estimate is 

obtained by maximizing the coefficient of determination (R2) with respect to the 
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possible values of Delta. Note that the final fitted model has a high R2 equal to 

about 95%, indicating an excellent fit of the linear-parabolic model for relating 

concentration to time for this serotonin study. 

For the GBR 12909 and desipramine, the model showed no effect of time 

on serotonin concentration and there was basically no change over the whole 

period of study. The plot of this fitted model is presented in Figure 2.8B and 2.8C 

respectively, which is almost flat, together with the estimated concentration levels 

(the solid circles) at each of the time points, and the 95% point-wise confidence 

intervals. 

It is important to note that using repeated measures anova with Dunnett 

test, the only information that was available is the time point at which pargyline 

caused a change that was statistically significant (p<0.05, 29 mins). On the other 

hand, through employing a statistical model that was built to take into account 

electrode variability, we were able to determine the point at which pargyline 

changed the ambient serotonin concentrations as soon as 2.60 minutes. This may 

be a more accurate reflection of the pharmacological profile of this agent.  

The combination of electrochemical and pharmacological characterizations 

performed in vivo and in vitro allows us to confidently assert that FSCAV is able to 

selectively measure ambient serotonin in vivo. The synergy with a chemometric 

approach introduces a new wealth of information that allows for more accurate 

electrode calibrations and a more comprehensive understanding of the time course 

of in vivo data. 
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2.5 CONCLUSIONS 

Imbalances in serotonin neurochemistry are important to study in the 

context of neuropsychiatric disorders. While FSCV can provide real-time chemical 

information, the method reports only phasic changes. Ambient serotonin levels are 

critical to establishing the fundamental extracellular mechanisms that control 

serotonin. Here, we reported FSCAV for ambient serotonin measurements. We 

performed a characterization of the FSCAV waveform for sensitive and selective 

serotonin measurements. In vivo, we utilized the waveform to report a basal 

serotonin level in mouse CA2 as 64.9 nM ± 2.3 nM (n = 15 mice, weighted average 

± standard error). We pharmacologically verified the in vivo signal against 

perceived interferences. Finally, we developed a statistical model to further 

analyze the FSCAV readings and report the uncertainty caused by measuring in 

vivo using different CFM’s. Serotonin FSCAV yields information about serotonin’s 

basal behavior in vivo and when coupled with FSCV at a single CFM will provide 

a deeper chemical insight into serotonin’s mechanisms in the brain. 
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CHAPTER 3: A COMPARISON OF IN VIVO SEROTONIN 
DYNAMICS IN THE MOUSE HIPPOCAMPUS AND PREFRONTAL 

CORTEX 
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3.1 ABSTRACT 

Serotonin plays important roles in brain physiology and is implicated in 

several affective disorders. The principle mechanisms that regulate extracellular 

serotonin in vivo are not well-understood, making the diagnosis and treatment of 

psychiatric illnesses challenging. It is therefore critical to characterize serotonin 

chemistry, specifically in localities that are thought to be involved in specific 

disorders. In this paper, we utilize fast scan cyclic voltammetry to characterize two 

new stimulation-release circuitries for serotonin, specifically, the CA2 region of the 

mouse hippocampus and the medial prefrontal cortex. To gain further insight into 

the extracellular mechanisms that regulate serotonin in these areas, we utilize 

triple staining immunohistochemistry along with single-photon microscopy to 

determine the density of serotonin transporters in these discrete localities. Finally, 

we use fast-scan controlled adsorption voltammetry to measure ambient serotonin 

levels in these two regions to verify the effects of serotonin transporter density on 

extracellular levels.  We determine that the dynamics of serotonin release and 

reuptake and ambient serotonin levels are distinctive to their respective regions 

and highly dependent on the density of serotonin transporters present. Our study 

is the first to use this powerful combination of tools to obtain information on the 

unique regional differences exhibited by the serotonergic system, that will be 

relevant to disease studies in local areas. 
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3.2 INTRODUCTION 

Imbalances in serotonin neurochemistry are postulated to underlie 

psychiatric disorders, such as depression and anxiety.1-3 The treatment of such 

disorders presents a challenge due to the poor characterization of serotonin 

chemistry in healthy and disease models. Thus, it becomes critical to characterize 

serotonin chemistry, specifically in localities that are thought to be involved in 

specific disorders.  

The dorsal raphe nucleus (DRN) projects, in both ascending and 

descending pathways, to innervate most of the brain regions and the majority of 

these projections are serotonergic.4 Two regions innervated by the ascending 

projections from the DRN are the hippocampus and the medial prefrontal cortex 

(mPFC)4 - regions chosen for their importance in a variety of disorders. The mPFC 

and hippocampus have been studied for their roles in depression, cognition and 

impulsivity.5-10 While both these regions have been previously studied using 

different methods5,6,11-16, we are interested in characterizing the dynamics of 

serotonin utilizing the high temporal resolution offered by fast scan cyclic 

voltammetry (FSCV) for release and reuptake and ambient measurements 

afforded by fast scan adsorption controlled voltammetry (FSCAV). These 

techniques offer us an advantage of making measurements at specific localities, 

with minimal tissue damage at in real time.  

In this letter, we characterize two novel stimulation-release circuitries for 

serotonin. We measure evoked release and reuptake after electrical stimulation of 

the medial forebrain bundle (MFB), in the mPFC and the CA2 region of the 
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hippocampus. We postulate that the dynamics of serotonin release and reuptake 

are characteristic of the region being studied. To better elucidate these differences, 

we utilize triple staining immunohistochemistry and single-photon microscopy to 

discern the differences in serotonin axons and transporter density in these regions 

and find that the voltammetry mirrors the local physiology. Subsequently, we use 

FSCAV to verify that high levels of serotonin transporter lower ambient levels of 

serotonin. Using this synergy of analytical and biological tools, we show that 

voltammetry can provide important information on local tissue physiology.  

3.3 RESULTS AND DISCUSSION 

FSCV is a background-subtracted method which necessitates the 

application of electrical stimulation, to induce a change that can be measured. This 

stimulation is performed by placing a stimulating electrode in the MFB; a bundle of 

neurons that originates in the DRN and innervates various brain regions as seen 

in Figure 3.1A. To measure serotonin release and reuptake, a nafion-coated 

carbon fiber microelectrode (CFM)17 is inserted, either the mPFC or the CA2 region 

of the hippocampus (Figure 3.1A), and the Jackson waveform, for FSCV serotonin 

measurements,18 is utilized.  

Figure 3.1B (i), (ii), and (iii), display representative color plots for both 

regions. The analysis of color plots has been explained elsewhere in detail; 19 

briefly, time is displayed on the x-axis, voltage on the y-axis and the current 

displayed in false color. The stimulation period (2 s) is denoted by a red bar below 

the color plots. Cyclic voltammograms (CVs), displayed in Figure 3.1C (I), (ii), and 
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(iii) are extracted at the vertical dashed lines in Figure 3.1B (I), (ii), and (iii), 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.1. (A) Representation of a sagittal section of a mouse brain. Red circles 
denote different brain regions. WE are the working electrode and STIM is the 
stimulating electrode. Green track represents the serotonergic innervation that 
begins in the DRN, and make up the MFB to innervate different brain regions. B) 
Representative FSCV color plots of (i) and (ii) the mPFC and (iii) the CA2. The 
red bar below the color plots denote the stimulation period (2 s) C) Cyclic 
voltammograms extracted from the vertical dashed lines in B(i), (ii), and (iii) with 
current on the y-axis and voltage vs. Ag / AgCl on the x-axis.  Green and yellow 
stars on B(ii) denote the two successive oxidation events seen in the mPFC.  CVs 
extracted at both these positions are seen in C (ii), marked with their respective 
stars. 
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These CVs contain the characteristic serotonin oxidation and reduction 

peaks found at 0.65 – 0.75 V and 0 V, respectively, verifying that the signal 

measured in these 2 regions is serotonin. Interestingly, in the mPFC, two different 

kinds of signals were observed. In Figure 3.1B (i) and 3.1C (i), a typical color plot 

and CV can be seen, with a single serotonin oxidation and reduction event. On the 

other hand, Figure 3.1B (ii) and 3.1C (ii) show a different signal, not previously 

observed with serotonin FSCV. This response constitutes 2 distinct and 

successive redox events, one being more delayed than the other. Upon extraction 

and examination of CVs from both these events, the first at 7s and the second at 

15 s, it is strongly implied by the position of the redox peaks that they are both 

serotonin redox events. There are various explanations for this observed 

phenomenon, including release by two populations of axons or a secondary 

messenger, and more work is currently being carried out to allow us to determine 

the exact cause of this response. The CA2 region shows a single serotonin redox 

event (Figure 3.1B (iii)), with the CV extracted displaying the characteristic 

serotonin redox peaks, as can be seen in Figure 3.1C (iii). 

The placement of the CFM in the mPFC and the CA2 was confirmed using 

histology displayed in Figure 3.2A (iii) and 3.2B (ii), respectively. Coronal slices 

of brains collected post in vivo experiments are presented, with 5 circles 

representing the 5 mice used in a region (green=mPFC and blue=CA2). For the 

mPFC, 5 mice were used for each response, thus coronal slices show 10 separate 

circles. The small lesions seen on the thionin stained coronal slices on the left of 
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both figures are an actual indication of the placement of the CFM in both regions 

in a representative brain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Averaged [Serotonin] – time profiles (n=5 ± SEM) and histological 
placements of CFMs in A) mPFC and B) CA2. A(i) is the averaged plot for the 
single response and A (ii) is the averaged plot for the “double peak” response in 
the mPFC. Yellow bars beneath the plot denote the stimulation period (2 s). A(iii) 
Thionin stained representative brains displayed on the left with a yellow circle 
denoting the actual placement of the CFM.  On the right, yellow lines represent the 
outlines of the mPFC region, and the green circles denote the placement of the 
CFM in each individual mouse, for both type of responses (n=10).  B(ii) Thionin 
stained representative brain displayed on the left with blue circle denoting the 
actual placement of the CFM.  On the right, yellow lines represent the outlines of 
the CA2 region, and the blue circles denote the placement of the CFM in each 
individual mouse (n=5). Bregma coordinates are shown to the right of each coronal 
slice. Region specific coordinates are further explained in the methods section. 
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The FSCV [serotonin] vs. time signal (obtained from the horizontal dashed 

lines in Figure 3.2B) comprises a rapid increase, occurring upon electrical 

stimulation, that peaks, then decays in a manner determined by inactivation 

mechanisms. Wood et. al., modeled the uptake of serotonin in the SNr via two 

mechanisms.19 The first, designated Uptake 1 is the serotonin transporters 

(SERTs) reuptaking serotonin with high affinity and low efficiency. Thus the 

[serotonin] vs. time curve is seen to decay slowly with a single slope. The second, 

Uptake 2, transpires due to the activity of non-serotonin (non-SERT) transporters, 

that uptake serotonin with high efficiency, but with low capacity. This generates a 

decay curve with a single slope that reaches baseline quickly. When there is a 

combination of SERTs and non-SERTs, the result is a hybrid signal, with a curve 

that decays quickly for a few seconds, followed by a slow decay until it reaches 

baseline, resulting thus in a decay curve with 2 different slopes.  

Figures 3.2A (i), (ii) and Figure 3.2B (i) display the average [serotonin] vs. 

time profiles (n=5 animals ± SEM) for the mPFC and the CA2, respectively. Figure 

3.2A (i), shows the [serotonin] vs. time profile for the “single peak” mPFC response 

that has a mixed uptake profile. The decay in the [serotonin] vs. time profile for the 

second “double peak” mPFC response (Figure 3.2A (ii)), is comprised of a short 

“fast” decay for a few seconds, which is then, interestingly, overcome by another 

rise in concentration, albeit smaller than the initial one. This rise decays at a much 

slower rate than the initial decay. Both decays have single slopes, which makes it 

likely that the “fast” decay is Uptake 2 controlled, whereas the “slow” decay is 

Uptake 1 controlled. The CA2 profile (Figure 3.1B (i)), on the other hand, exhibits 
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a pattern of predominantly Uptake 2 controlled response, along with a small 

Uptake 1 component. Both regions are suggestive of a mixed SERTs and non-

SERTs presence. Previous research into the localization and functions of 

transporters across the brain has uncovered the presence of both SERTs and non-

SERTs in the hippocampus as well as the prefrontal cortex.20,21 Among the non-

SERTs found in both regions are dopamine transporters (DATs)22,23, 

norepinephrine transporters (NETs)23, and organic cation transporters (OCTs)24. 

Our chemical data allows us to postulate that a higher density of SERTs must be 

present in the mPFC. 

To confirm our hypothesis, we performed triple staining 

immunohistochemistry on Slc6a4-EGFP mice. By using triple staining, 

EGFP/NeuN/SERT, followed by single-photon microscopy, we were able to 

visualize the serotonin axons in green (EGFP), the neuronal cell bodies in cyan 

(NeuN), and the SERTs in red, as can be seen in Figure 3.3A and B, for the CA2 

and the mPFC, respectively. The yellow seen in both images is a result of having 

both green and red i.e. both serotonin axons and SERTs in the same spot, thus 

the amount of yellow, along with pure red, should signify the density of SERTs 

present. As can be seen from Figure 3.3, the CA2 region contains a lower density 

of green axons, signifying a lower density of serotonin axons, which along with the 

lower density of red and yellow, signifies a lower density of SERTs in this region. 

The mPFC on the other hand, contains a denser innervation of serotonin axons, 

signified by a larger network of green axons seen in Figure 3.3B. In addition, the 

larger spread of red dots and yellow in this image signifies a higher amount of 
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SERTs. L1 and L2/3 are different layers of the mPFC. It is interesting to note vast 

changes in the distribution and density of SERTs and serotonin axons between the 

two layers. It is possible that the different responses obtained in the mPFC could 

be due to the placement of the CFM in the different layers of the mPFC, a notion 

we are working to verify.    

 

 

 

 

 

 

 

 

 

Figure 3.3. EGFP/NeuN/SERT triple staining immunohistochemistry followed by 
single-photon microscopy for the A) CA2 and B) mPFC of Slc6a4-EGFP mice. 
Green represents serotonin axons, cyan is neuronal cell bodies, and red are 
SERTs. Yellow is a result of green serotonin axons and red SERTs being at the 
same spot. B) L1 and L2/3 are different layers of the mPFC. 

 

The observed differences in SERT density thus explain uptake differences 

observed between the mPFC and CA2. We further hypothesize that the magnitude 

of SERTs present should determine ambient serotonin levels because of the high 

capacity of SERTs for serotonin.  We utilized fast-scan controlled adsorption 

voltammetry (FSCAV) to measure serotonin’s extracellular concentration in these 

two brain regions. 



www.manaraa.com

 60 

 

 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
Figure 3.4. Dark blue and green circles represent the weighted averaged response 
(n=5 mice ± SEM), and faint blue and green markers represent individual mice 
responses Files were collected for 60 mins to obtain a baseline reading. 
Representative FSCAV color plots and CVs (extracted from vertical dashed lines) 
are inset, on top for the CA2 and at the bottom for mPFC. Yellow lines on the CV 
denote the limits of integration. ∗∗∗∗p<0.0001  

 

First MFB stimulation was employed in mice to verify the presence of 

serotonin with FSCV. FSCAV was then performed on the same CFM for 60 mins 

to obtain a baseline reading of ambient serotonin concentration. The dark blue and 

green circles on the central trace of Figure 3.4 represent the weighted average 

response (n=5 ± SEM) in the CA2 and mPFC respectively.  Individual mice traces 

are displayed by faint markers, of similar color, on the same plot. Representative 

in vivo color plots, along with CVs extracted from the 3rd scan (vertical dashed line), 

post controlled adsorption period, can be seen on Figure 3.4. The color plot and 
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CV collected in the CA2 are on the top, while those collected in the mPFC are at 

the bottom. Both CVs demonstrate the characteristic redox serotonin peaks, thus 

confirming the identity of the signal measured.  

To report the ambient concentration of serotonin in these 2 regions, we used 

a chemometric approach, to take into account the variability between the CFMs 

used, along with the in vivo variability. This approach was explained by us in detail 

elsewhere; 25 in brief, a linear functional model was developed using in vitro 

calibrations performed on the electrodes post in vivo experiments. Using 5 mice 

for each region, the weighted average ambient serotonin level in the CA2 was 66.9 

± 0.57 nM (n = 5 mice, weighted average ± standard error), whilst the level in the 

mPFC was 59.8 ± 1.25 nM (n = 5 mice, weighted average ± standard error). A 

paired 2-sample t-test performed on these concentrations confirms a statistically 

significant difference between the basal levels in the 2 regions (p < 0.0001). Earlier 

reports on extracellular concentration of serotonin at different brain regions, 

collected with microdialysis, report significantly lower values.26-30 As previously 

clarified in the paper published by Abdalla et.al. 25 the higher values can be 

explained by the different spatial resolution offered by the comparatively smaller 

CFM’s, along with signal optimization achieved through electrode placement 

(verified by stimulated serotonin measurement), which allows for measurements 

from areas with higher serotonergic activity.  

Ambient neurotransmitter concentration is partly controlled by type and 

density of transporters present.31 We observed significantly more SERTs in the 

mPFC and this lead us to hypothesize that the ambient serotonin levels (if activity 
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of neurons is assumed the same) in the mPFC should be lower than in the CA2 

because the SERTs have much higher affinity for serotonin. Indeed, we found this 

to be true. It must be noted that the electrical stimulation is aphysiological and 

although we see reuptake by Uptake 2 transporters with elicited serotonin release 

in the CA2, it is likely that serotonin is much more confined to the synapses where 

high affinity SERT dominate ambient levels. 

 Determining the different mechanisms that control serotonin 

neurochemistry in the different brain regions is challenging due to the inability of 

one single method to provide a complete picture of how serotonin is controlled and 

regulated in the brain. In this letter, we present a synergy of methods, 

electrochemical and biological to afford further insight into two discrete brain 

regions: the CA2 region of the hippocampus and the mPFC. We determine key 

differences in serotonin regulation in these 2 regions can be attributed, at least in 

part, to SERT density. This study highlights the power of electrochemistry in 

providing physiological information about local tissue. 

 

3.4 METHODS 

Carbon-Fiber Microelectrodes 

CFM’s were constructed through the aspiration of a single T-650 carbon 

fiber (7 μm, Goodfellow, Coraopolis, PA) through a cylindrical glass capillary 

(internal diameter: 0.4 mm, external diameter: 0.6 mm, A-M Systems, Carlsborg, 

WA). This capillary was then placed in a vertically pipette puller (Narishige Group, 

Setagaya-Ku, Tokyo, Japan) to make a carbon – glass seal by gravity. The 

protruding carbon fiber was then cut to about 150 μm in length. Subsequently, a 
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solution of nafion (Liquion-1105-MeOH, Ion Power, DE) was electrodeposited as 

previously described onto the exposed carbon fiber. 17 The CFM was then dried 

for 10 minutes at 70°C.  

Animal Surgery 

6 to 8 weeks old C57BL/6J male mice, between 20-25 g, were procured 

from Jackson Laboratories (Bar Harbor, ME). Mice were offered food and water ad 

libitum and housed in 12 hours light/dark cycles. The Guide for the Care and Use 

of Laboratory Animals, as accepted by the Institutional Animal Care and Use 

Committees (IACUC) of the University of South Carolina, was followed in all animal 

care and procedures. Anesthetic urethane, (25% dissolved in 0.9% NaCl solution, 

Hospira, Lake Forest, IL) was administered intraperitoneally (i.p.) at a volume of 7 

μL per 1 g mouse weight, followed by stereotaxic surgeries (David Kopf 

Instruments, Tujunga, CA). To maintain the ideal mouse body temperature of 37° 

C, a heating pad from Braintree Scientific was utilized. For stereotaxic coordinates 

of MFB [AP: -1.58, ML: +1.0, DV: -4.8 to -5.0], CA2 [AP: -2.9, ML: +3.35, DV: -2.5 

to -3.0], and mPFC [AP: +1.7, ML: +0.2, DV: -2.0 to -3.0], bregma was used as a 

reference from Franklin and Paxinos (2008). In order to access the MFB, CA2, 

and, mPFC holes were drilled in line with the above stereotaxic coordinates. For 

stimulation, a stainless-steel electrode (diameter 0.2 mm; Plastics One, Roanoke, 

VA) was inserted into the MFB. For measurements, the nafion-coated CFM was 

then inserted into either the CA2 or the mPFC. The reference electrode is made of 

a silver wire (diameter: 0.010 in; A-M Systems, Sequim, WA), which was 

electroplated with chloride through immersion of in hydrochloric acid (0.1 M, 4 V 
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vs. tungsten). This is then placed into the contralateral hemisphere of the CFM 

placement. A 60 Hz biphasic 360 μA, 120 pulse stimulation, that is 2 ms per phase 

was then used through employing a linear constant current stimulus isolator 

(NL800A Neurolog; Digitimer Ltd.).  

Data Collection  

FSCV and FSCAV were both performed through instrumentation and 

software (WCCV 3.05) developed by Knowmad Technologies LLC (Tucson, AZ). 

FSCAV was applied through a CMOS precision analog switch, ADG419 (Analog 

Devices), which is used in order to control the application of the computer-

generated “Jackson” waveform to the CFM. The logic was software - controlled to 

either apply a series of ramps (0.2 V to 1.0 V to -0.1 V to 0.2 V, scan rate = 1000 

V/s) every 10 ms (100 Hz), or apply a constant potential of 0.2 V to the CFM for a 

specified controlled adsorption period (10 s). 

Data analysis 

Signals collected from FSCV and FSCAV were processed using software 

written in-house using LabVIEW 2009. The processing used includes signal 

deconvolution, filtering, and smoothing. For FSCAV, the CV at the 3rd scan 

(following the controlled adsorption period) was extracted to integrate the serotonin 

oxidation peak approximately between 0.4V and 0.85V. The charge value found, 

in pC, was then plotted versus [serotonin] to generate calibration curves that were 

then used to calculate in vivo values. 
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Statistical Analysis 

The in vitro calibration data was used to develop linear models, that relate 

charge with both the concentration and the different electrodes used in vivo, so as 

to accommodate for the varying responses between electrodes, as explained 

previously. 25 The data fitting was executed using the linear model via the lm 

command in the R program. Using the developed fitted linear models, along with 

the in vitro calibrations and the charge values collected in vivo for 60 mins, an 

estimation of the ambient serotonin levels at each of the time points were attained. 

In order to obtain an average concentration level estimate for each time point (60 

mins), the concentration estimates from each of the 5 CFMs were used for a 

weighted pooling. These weights were calculated based on the inverse of the 

estimated variance of the concentration estimates. 95% point-wise confidence 

intervals were constructed by fitting the developed functional model to the pairs of 

time and concentration values through the use of the predict.lm command in the R 

package.  

Exclusion Criteria 

For all FSCV experiments, CV of the evoked signal was compared with well-

established CVs and mice in which the CVs did not contain the characteristic 

serotonin redox peaks17 was excluded. For FSCAV experiments, a stimulated 

serotonin response was collected prior to the start of FSCAV and the same 

aforementioned test was performed. In addition, mice that did not remain alive until 

the end of the collection time were excluded. All other animals were included in 

this study.  
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Histology 

In order to confirm the spatial placement of the CFM in vivo, a small lesion 

was created at the end of the FSCV experiment, by applying a constant potential 

at the CFM (10 V for 1 min). Subsequently, the mice were euthanized and the brain 

was removed from the skull and stored in 4% paraformaldehyde in PBS solution. 

At least 2 days before sectioning, the brain is transferred into a 30% sucrose 

solution, until it sinks. The brain is then flash-frozen and sectioned into 30 μm slices 

mounted onto frosted glass slides, and stained with 0.2% thionin. The slices are 

then photographed with an optical microscope.  

Immunohistochemistry 

The Slc6a4-EGFP mice were anesthetized with urethane (25% dissolved in 

0.9% NaCl solution, Hospira, Lake Forest, IL) administered intraperitoneally (i.p.) 

at a volume of 7 μL per 1 g mouse weight then perfused intracardially with 

phosphate-buffered saline (PBS) followed by 4% paraformaldehyde in PBS at 4 

°C.  The entire brain was removed and fixed in 4% paraformaldehyde for 3 hours 

at room temperature and then cryoprotected in 15% sucrose in PBS overnight at 

4 °C, followed by a switch to 30% sucrose on the next day and continuing 

overnight.  Sections of the mouse brain (40 µm thick) were prepared using a 

microtome and were washed with PBS and then blocked with 5% normal goat 

serum and 0.3 % Triton X-100 in PBS for 2 hours at room temperature.  The 

sections were incubated in primary antibody diluted in blocking buffer, overnight at 

4 °C. The primary antibodies used were chicken anti-GFP (1:5000, Aves Labs 

#GFP-1010), guinea pig anti-SERT (1: 1,000, Frontier Institute #HTT-GP-Af1400), 
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rabbit anti-TH (1: 1,000, Millipore #AB152), and mouse anti-NeuN (1:500, Millipore 

#MAB377). The sections were then washed with PBS and incubated in the 

secondary antibody in a blocking buffer for 2 hours at room temperature.  The 

secondary antibodies used were Alexa Fluor 488-labeled goat anti-mouse 

(1:1000, Life Technologies #A11039), Cy3-labeled goat anti-guinea pig (1:800, 

Jackson ImmunoResearch Laboratories #106-165-003), Cy3-labeled goat anti-

rabbit (1:800, Jackson ImmunoResearch Laboratories #111-165-003), and Cy5-

labeled goat anti-mouse (1:200, Jackson ImmunoResearch Laboratories #115-

175-146). Then, the sections were mounted on slides, and images were acquired 

using a single-photon confocal microscope (Zeiss). 
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CHAPTER 4: IN VIVO HISTAMINE VOLTAMMETRY IN THE 
MOUSE PREMAMMILLARY NUCLEUS  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reprinted with permission from Analyst 

Samaranayake, S.; Abdalla, A.; Robke, R.; Wood, K. M.; Zeqja, A.; Hashemi, P., 

In vivo histamine voltammetry in the mouse premammillary nucleus. Analyst 

2015, 140 (11), 3759 - 3765 

I contributed both experimentally and intellectually and the results of this project 

directed me to my next project.
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4.1 ABSTRACT 

Histamine plays a major role in the mediation of allergic reactions 

such as peripheral inflammation. This classical monoamine is also a 

neurotransmitter involved in the central nervous system but its roles in this 

context are poorly understood. Studying histamine neurotransmission is 

important due to its implications in many neurological disorders. The 

sensitivity, selectivity and high temporal resolution of fast scan cyclic 

voltammetry (FSCV) offer many advantages for studying electroactive 

neurotransmitters. Histamine has previously been studied with FSCV; 

however, the lack of a robust Faradaic electrochemical signal makes it 

difficult to selectively identify histamine in complex media, as found in vivo.  

In this work, we optimize an electrochemical waveform that provides a 

stimulation-locked and unique electrochemical signal towards histamine. 

We describe in vitro waveform optimization and a novel in vivo physiological 

model for stimulating histamine release in the mouse premamillary nucleus 

via stimulation of the medial forebrain bundle. We demonstrate that a robust 

signal can be used to effectively identify histamine and characterize its' in 

vivo kinetics. 
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4.2 INTRODUCTION 

The central nervous system holds four aminergic systems, dopamine, 

serotonin, norepinephrine and histamine. These messengers are in an intricate 

chemical interplay with one-another and other neurotransmitters to precisely 

modulate many aspects of brain function. It is critical to understand the 

fundamental neurochemistry of these four modulatory systems to better prevent, 

diagnose and treat brain disorders and diseases. Fast scan cyclic voltammetry 

(FSCV) at carbon fiber microelectrodes (CFMs) is a uniquely powerful method for 

in vivo analysis. CFMs are biocompatible, cause negligible damage to brain tissue 

and, because of their kinetically favorable surface kinetics, provide real-time output 

of electroactive neurotransmitters.  

The dopaminergic system has been extensively studied with FSCV over the 

previous three decades leading to breakthroughs in understanding dopaminergic 

mechanisms in the brain.1-3 More recently, FSCV has been recently developed for 

the detection of serotonin and norepinephrine 4, 5 and many important aspects of 

the two neurotransmitters are thus being unearthed.6-10 Histamine is also an 

electroactive amine, and there have been previous reports of histamine induced 

FSCV signals in mast cells,11-13 brain tissue slice preparations14 and in vivo,15 

however mechanistic studies on histamine are limited. This is primarily because 

histamine electrochemistry is complex, and FSCV induced histamine signals are 

often interpreted via changes in the capacitative current on the electrode surface. 

This approach is fully quantitative; however, many analytes induce a capacitative 



www.manaraa.com

 

 73 

change at the electrode surface limiting selectivity and rendering in vivo studies 

very difficult.  

Faradaic electrochemistry more selectively identifies analytes because of 

the unique potential position of redox peaks.16 In this paper, we discuss the 

relevance of histamine adsorption to capacitative currents at CFMs. We describe 

a novel FSCV waveform that generates a robust oxidation peak in response to 

histamine. We show in vitro, that histamine can be detected selectively and with 

high sensitivity. Finally, we report and verify a robust histamine signature in the 

mouse premammillary nucleus (PM) in response to medial forebrain bundle (MFB) 

stimulation.  

Our novel FSCV waveform for histamine provides a tool that will enable the same 

level of investigation for histamine as other, more established brain amines. 

Histamine’s roles in the brain, in particular with respect to disorders in which it is 

implicated (e.g. Alzheimer’s disease) can thus be systematically studied. 

4.3 EXPERIMENTAL SECTION 

Chemicals and Reagents 

Standard solutions were prepared by dissolving histamine dihydrochloride, 

dopamine hydrochloride, serotonin hydrochloride and adenosine hydrochloride 

(Sigma-Aldrich, Co., MO, USA) respectively in Tris-buffer. Tris-buffer was 

constituted thus: 15 mM H2NC(CH2)(OH)3.HCl, 140 mM NaCl, 3.25 mM KCl, 1.2 

mM CaCl2, 1.25 mM NaH2PO4.H2O, 1.2 mM MgCl2 and 2.0 mM Na2SO4 at pH=7.4 

in deionized water (EMD Chemicals Inc. NJ, USA). 
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Carbon-Fiber Microelectrodes (CFMs) 

CFMs were fabricated with 7µm diameter carbon-fibers (Goodfellow 

Corporation, PA, USA) aspirated in to glass capillaries (0.6 mm external diameter, 

0.4 mm internal diameter, A-M systems, Inc., Sequim, WA). A carbon-glass seal 

was formed via a vertical micropipette puller (Narishige Group, Tokyo, Japan). The 

exposed length of the carbon fiber was trimmed to 150 µm under an optical 

microscope. Microelectrodes were electroplated with Nafion as described 

previously.4 

Data Collection/Analysis 

Waveform generation was via a PCIe-6341 DAC/ADC card (National 

Instruments, Austin, TX). Output current was measured by a CHEM-CLAMP 

potentiostat (Dagan corporation, MN). Custom built software was employed to 

drive the hardware, collect data and perform analysis including background 

subtraction, signal averaging and digital filtering (Knowmad Technologies LLC, 

Tucson, AZ). All potentials are quoted with respect to Ag/AgCl reference 

electrodes, which were fabricated via electrodeposition of Cl- by holding a silver 

wire (A-M systems, WA) at 4.0 V for 5 s in 1 M HCl. All data represented with error 

bars represent the standard error of the mean (SEM). Statistical differences were 

determined using one-tailed student’s-tests on paired data sets (p<0.45 was taken 

as statistically different). 

Langmuir Adsorption Isotherms 

A CFM was placed into histamine solution of standard concentration and an 

optimized histamine waveform was applied. An electronic relay (ADG-419, Analog 
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Devices) was used to switch between the applied waveform and a constant 

potential (-0.5 V) for 10 seconds to allow histamine adsorption at the electrode 

surface and reach equilibrium. After 10 seconds, the waveform was reapplied, and 

the first background-subtracted cyclic voltammogram was collected and analyzed 

for total adsorbed histamine. In house LabVIEW 2012 software integrated the 

oxidation peak from the background subtracted cyclic voltammogram and 

Faraday's law was used to convert this to a surface concentration (Γhistamine). 

Measured data was fit to a linearized Langmuir adsorption isotherm as previously 

described,17 and K is the equilibrium constant for adsorption. This experiment was 

performed in Tris buffer (15 mM). 

Flow Injection Analysis 

In vitro analyses were performed with flow injection analysis (FIA). CFMs 

were inserted into a flangeless short 1/8 nut (PEEK P-335, IDEX, Middleboro, MA) 

such that around 2 mm of the tip remained exposed outside of the nut. The 

microelectrode-containing nut was then fastened into a modified HPLC union 

(Elbow PEEK 3432, IDEX, Middleboro, MA). The other end of the elbow union was 

fastened into the out-flowing steam of the FIA buffer and two holes were drilled 

into the union for incorporation of the reference electrode and for a ‘waste’ flow 

stream. Flow was maintained with a syringe infusion pump (kd Scientific, model 

KDS-410, Holliston, MA) at 2 mL min-1. A rectangular pulse of analyte was 

introduced into the flow steam for 10 s via a six-port HPLC loop injector (Rheodyne 

model 7010 valve, VICI, Houston, TX). For calibrations and waveform optimization, 

analytes were injected in random concentrations order to avoid carry-over effects. 
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Potentiometry 

The open circuit potential between CFMs and Ag/AgCl was measured using 

a potentiostat with an integrated high impedance amplifier (eDAQ Pty Ltd, NSW, 

Australia). 200 µM of histamine was injected onto the CFM in Tris-buffer using FIA 

at pH = 7.4. Subsequent injections were after potential recovered to base line. 

Animal Surgeries 

Handling and surgery on male C57BL/6J mice weighing 20−25 g (Jackson 

Laboratory, Bar Harbor, ME) were in agreement with The Guide for the Care and 

Use of Laboratory Animals, approved by the Institutional Animal Care and Use. 

Urethane (25% dissolved in 0.9% NaCl solution, Hospira, Lake Forest, IL) 

was administered via intraperitoneal (i.p.) injection, and stereotaxic surgery (David 

Kopf Instruments, Tujunga, CA) was performed. A heating pad sustained mouse 

body temperature around 37 °C (Braintree Scientific, Braintree, MA). Stereotaxic 

coordinates were taken in reference to bregma. A Nafion modified CFM was 

inserted into the PM (AP: −2.45, ML: +0.50, DV: −5.45 to −5.55.). A stainless-steel 

stimulating electrode (diameter: 0.2 mm, Plastics One, Roanoke, VA) was 

positioned into the MFB (AP: -1.07, ML: +1.10, DV: −5.00). 120 biphasic pulses 

were applied through a linear constant current stimulus isolator (NL800A, 

Neurolog, Medical Systems Corp., Great Neck, NY). The 60 Hz trains were 350 

μA each phase, 2 ms in width, and 2 s in length. An Ag/AgCl reference electrode 

was implanted into the brain’s opposite hemisphere. 
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Drugs 

Tacrine hydrochloride (2 mg kg-1) and thioperamide maleate (20 mg kg-1) from 

TOCRIS bioscience (Bristol, UK) were dissolved in saline respectively and injected 

i.p. at a volume of 0.6 ml kg-1. 

4.4 RESULTS AND DISCUSSION                                                                                                                  

Histamine Adsorption onto CFMs Underlies Capacitative FSCV Current 

Histamine has previously been detected in mast cells and neural tissues 

with FSCV.11-15 In the majority of these studies, the oxidation peak that appeared 

at or after the switching potential on the positive wave, as illustrated in Figure 4.1, 

was used for quantification. Figure 4.1A (i) is an FSCV color plot during flow 

injection of histamine (20 µM) onto a CFM with a serotonin sensitive waveform.18 

The interpretation of color plots is described in detail elsewhere,19 briefly, potential 

is displayed on the y-axis, time on the x-axis and current in false color and injection 

time is denoted by the star. 

A cyclic voltammogram (CV) taken from the vertical white dashed line of the 

color plot displays an oxidation peak at around 0.8 V that appears after the 

switching potential (on the returning positive scan). In previous work, a stimulation-

locked signal in the rat substantia nigra (SNr) displayed a similar CV and was 

pharmacologically determined to be histamine.15 In the absence of pharmacology 

however, it is not possible to selectively verify histamine with this waveform, this is 

because other electroactive species give identical CVs. Figure 4.1A (ii) is a color 

plot taken during FIA of adenosine (10 µM). The corresponding CV (Figure 4.1B) 

is almost identical to that of histamine’s. In a region containing both adenosine and 
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histamine, therefore, it is not possible to distinguish between these analytes 

electrochemically. Furthermore, other work has shown similar CVs for H2O2 and 

gonatropin-releasing hormone,20,21 further complicating selective histamine 

detection. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1. (A) shows color plots for FIA of (i) 20 µM histamine (ii) 10 µM 
adenosine. B) shows CVs extracted from the vertical dashed lines from (i) and (ii). 
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potential window of previously utilized waveforms. In fact, the electrochemical 

oxidation scheme for histamine is not known, presumably because it involves 

charge transfer. We therefore postulate that the peaks observed in Figure 4.1 are 

due to non-Faradaic processes. These processes arise on the CFM surface when 

spontaneous adsorption of histamine causes changes in the electrical bilayer. The 

electrical bilayer on electrode surfaces acts as a capacitor, discharging current into 

the electrode, particularly at switching potentials. Capacitative or charging currents 

are a well-known phenomenon in FSCV because of the high scan rates 
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background charging currents which do not reflect Faradaic processes associated 
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with analytes of interest. However, adsorption of histamine changes the 

background capacitative current which cannot be subtracted out, this effect 

manifests as the features in the CVs in Figure 4.1.  

In Figure 4.2, FIA was utilized to inject histamine (200 µM) onto CFMs while 

the open field potential was measured vs. Ag/AgCl (Figure 4.2A). Figure 4.2B 

shows that the potential of the CFMs rapidly peaks in response to histamine 

injections. Because there is no driving potential, this implies that histamine 

spontaneously adsorbs to and changes the potential of the CFM. The features on 

histamine’s CV in Figure 4.1 are likely a consequence of the current that arises 

from this adsorption. To further verify this histamine adsorption, Langmuir 

isotherms were constructed for histamine with a previously described method 22 

confirming monolayer coverage of the CFM (Figure 4.2C). 

 

 

 

 

 

 

 

 

 

Figure 4.2. (A) shows the schematic diagram of the experimental setup used for 
potentiometric experiments. B) shows the experimental potentiometric data for five 
consecutive injections of histamine (200 µM) on CFM. C) Langmuir isotherm for 
histamine adsorption on CFMs in Tris buffer. 
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While charging current peaks can quantify histamine, little selectivity is 

offered since many analytes adsorb onto CFMs. We therefore designed a novel 

waveform to capture histamine electrochemistry before the switching potential. 

Histamine Selective Waveform (HSW) 

Histamine contains an imidazole ring and an aliphatic amine group. This 

molecule’s ability to readily bind metals such as Cu,23,24 because of its 

electronegative sites, means that it is readily amenable to oxidation. However, 

histamine electro-oxidation differs from serotonin and dopamine in that it likely 

involves charge transfer. This mechanism introduces kinetic limitations that have 

not yet enabled stimulation-locked peaks on the positive direction of the wave in 

FSCV studies. Therefore, preliminary we utilized a triangular waveform and 

expanded the potential window to cover a large range thereby allowing histamine 

oxidation to occur within a single scan. Through trial and error, we determined that, 

in vitro, a waveform scanning from -0.7 to 1.1 V (resting at -0.7 V at 600 Vs-1) 

provided an oxidation peak during the positive scan. However, this waveform was 

not successful in vivo, showing rapid degradation (fouling). By changing the resting 

potential to -0.5 V, we found that electrode degradation was eliminated, and in vivo 

detection was possible. A possible explanation for this phenomenon is that at -0.7 

V, fouling species (e.g. proteins) may preferentially adsorb onto the electrode 

surface.  

Our optimized waveform, the histamine selective waveform (HSW), 

therefore is -0.7 V to 1.1 V, resting at -0.5 V, with a scan rate of 600 Vs-1. Figure 
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4.3 compares histamine detection with the previously described serotonin 

waveform15 to the HSW.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. (A & C) show color plots for FIA of 20 µM histamine with the serotonin 
and HSW waveforms respectively. CVs extracted from vertical dashed lines are 
shown on the right. B) shows current vs. time traces from the horizontal dashed 
lines from color plots. D) shows (i) Calibration curve, (ii) Linear dynamic range 
(n=4 ± SEM). E) Stability of CFM over 50 consecutive injections of 10 μM histamine 
(n=4 ± SEM). 
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Figure 4.3A (serotonin waveform) and C (HSW) show color plots and CVs 

during FIA of histamine (20 µM). The HSW detects histamine oxidation at around 

+ 0.3 V vs. Ag/AgCl, and in contrast to the serotonin waveform, this peak occurs 

before the switching potential on the positive wave.  Furthermore, current vs. time 

traces, extracted from horizontal dashed lines from the color plots (Figure 4.3B), 

show that the HSW response is a square injection while the serotonin waveform 

response does not reach steady state. This makes it possible to more accurately 

describe histamine in vivo kinetics (i.e. histamine clearance kinetics) with the HSW. 

The HSW has a linear dynamic range up to 20 µM of histamine (Figure 4.3D (ii)), 

a sensitivity of 0.354 ± 0.032 nA/µM and a limit of detection of 1 µM. Finally, 

histamine measurements with this waveform show good stability, as evidenced by 

the negligible loss in signal (normalized oxidation current) during 50 successive 

flow injections of histamine (10 µM) (Figure 4.3E). 

HSW Selectivity  

We sought to develop a waveform to produce a histamine oxidation peak 

before the switching potential on the positive scan to increase the selectivity of 

FSCV towards histamine. To assess the selectivity of the waveform in vitro, we 

tested dopamine, serotonin and adenosine, which are electroactive species that 

are chemically similar to histamine and commonly found in brain regions containing 

histamine.25,26,27 Figure 4 shows CVs obtained during FIA of histamine (20 µM), 

dopamine (100 nM), serotonin (10 nM) and adenosine (1 µM). These 

concentrations were chosen to mimic previously reported evoked in vivo 

concentrations.11,26,28 Adenosine’s peak still occurs at the switching potential with 
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this waveform and is therefore unlikely to interfere. The oxidation peak for 

histamine appears at around 0.3 V vs. Ag/AgCl (green dashed line) and is in a 

different position from dopamine and serotonin oxidation peaks (around 0.5 and 

0.6 V vs. Ag/AgCl (red and blue dashed lines), respectively).  

The HSW therefore shows good selectivity in vitro. However, the in vivo 

matrix is far more complicated than can be reproduced on the bench. We next 

assessed the ability of our novel waveform to measure histamine in vivo.  

  

              

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4.4. CVs for 20 µM histamine, 100 nM dopamine, 10 nM serotonin and 1 
µM adenosine with in vitro FIA using HSW on CFMs. Vertical dashed lines indicate 
potential positions of peaks. 
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In Vivo Histamine 

Histamine and serotonin were previously found to be co-released in the SNr 

upon electrical stimulation of the MFB.15 We were interested in isolating a 

histamine signal in a novel physiological circuitry involving the histamine cell 

bodies. Histamine cell bodies are confined to the posterior hypothalamus, the 

tuberomamillary nucleus (PM), and send their afferents to the forebrain via the 

MFB.29,30,31 By utilizing a retrograde-stimulation15 of the MFB, we reasoned that we 

would be able to detect histamine in the PM since histamine has previously been 

measured in this region with microdialysis.32  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5. (A) shows a representative colors plot of in the PM upon MFB 
stimulation. B) shows a representative in vitro color plot of histamine (20 µM) using 
FIA. C) shows [histamine] vs. time extracted from the horizontal dashed line from 
color plot A. D) shows normalized CVs of in vivo and in vitro (5 µM histamine) 
signals taken from vertical dashed lines. 
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(Figure 4.5B) was normalized and superimposed onto this in vivo CV, there was 

very good agreement between the oxidation peaks at 0.3 V. The additional 

features of the in vivo CV are due to the capacitative changes on the electrodes 

surface because of changes in the in vivo environment (ionic fluxes, pH changes). 

Where it not for the peak at 0.3V, it would be impossible to disentangle histamine’s 

electrochemistry from this other electrochemistry occurring at the switching 

potential. 

Figure 4.5C shows how histamine changes with time, determined by 

extracting current vs. time from the horizontal dashed line of the color plot and the 

calibration curve in Figure 4.3D. Histamine levels elevate in response to electrical 

stimulation to around 8 µM and then clear after the stimulation, similar in magnitude 

to histamine release from mast cells.11 This profile is similar to dopamine and 

serotonin reuptake.10,33 This is an important finding since it implies a similar 

reuptake system for histamine, however a histamine transporter is yet to be 

identified.34 

Although the electrochemistry is supportive of histamine’s identity. It is 

necessary to perform pharmacological experiments to validate the histamine 

response. Histamine neuropharmacology is not well explored in voltammetry 

models and there are very few histamine selective compounds that can cross the 

blood brain barrier. As a first step, we utilized tacrine, a pharmaceutical therapy for 

Alzheimer’s disease. Tacrine is thought to primarily inhibit acetylcholinesterase, 

however it also is a potent inhibitor of histamine N-methyltransferase (HNMT) 

(histamine metabolizing enzyme).35-37 Figure 4.6 shows the effect on the evoked 
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PM signal (schematic of circuitry shown in Figure 4.6A) upon i.p. tacrine (2 mg kg-

1)38 administration (n=5 animals ± SEM). Consistent with tacrine’s pharmacokinetic 

profile in rodents,39 there was a clear effect 50 minutes after administration, 

whereby the t1/2 of histamine clearance increased significantly from 10.9 ± 1.1 s to 

15.44 ± 2.6 s (p=0.01) (Figure 4.6B). This is an expected result of inhibition of 

histamine metabolism: because HNMT is located intracellularly, 40, 41 inhibition of 

this enzyme raises cystolic histamine levels which slows down the reuptake 

equilibria back into the cell. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.6. (A) shows the positions of electrodes (stimulation and CFM) in mouse 
brain. B & D show representative color plots of stimulated release of histamine 
using HSW - before and after tacrine (2 mg Kg-1) and thioperamide (20 mg Kg-1). 
C & E show concentration vs. time traces extracted from horizontal dashed line 
from B & D respectively, (n=5 ± SEM). The 2 s stimulation starting at 5 s is shown 
by the blue bar. 
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Because tacrine is non-selective, we performed a further pharmacological 

experiment to verify the PM signal. Thioperamide is a selective H3 receptor 

antagonist. We would expect thioperamide administration to affect the kinetics of 

histamine release and clearance via inhibition of these histamine autoreceptors in 

the PM.42 

Figure 4.6C and D show that 50 minutes after thioperamide (20 mg kg-1),43 

there was a pronounced increase in histamine release from 7.9 ± 2.1 to  11.8 ± 4.6 

μM (p=0.02). Increases in evoked release have previously been seen with 

dopamine and autoreceptor antagonism.44, 45 A significant increase in the t1/2 of 

histamine clearance was also observed from 13.3 ± 3.4 s to 18.8 ± 3.2 s (p=0.03), 

which was seen in prior studies with serotonin autoreceptor antagonism.10 The 

time course of this experiment is also consistent with thioperamide’s 

pharmacokinetics in rodents.46 

These pharmacological experiments, in addition to the electrochemical 

characterization allow us to confidently verify the histamine nature of this signal in 

the PM.  

4.5 CONCLUSION 

Histamine has important, but not well studied roles as a 

neurotransmitter. FSCV is an ideal tool for histamine detection because of 

its sensitivity, selectivity and high temporal resolution. Previous FSCV 

studies have not been able to selectively identify histamine because the CV 

features were due to capacitative processes on the electrode surface that 

are not selective.  Here, we developed the HSW that provides a robust 
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oxidation peak before the switching peak. We described in vitro waveform 

optimization and a novel in vivo physiological model for retrograde 

stimulation of histamine release in the mouse PM. We verified this signal 

pharmacologically as histamine. This novel FSCV method will enable 

detailed in vivo characterizations of this important neuromodulator. 
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CHAPTER 5: A VOLTAMMETRIC AND MATHEMATICAL 
ANALYSIS OF HISTAMINERGIC MODULATION OF SEROTONIN 

IN THE MOUSE HYPOTHALAMUS 
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Hashemi, P., A Voltammetric and Mathematical Analysis of Histaminergic 

Modulation of Serotonin in the Mouse Hypothalamus. J Neurochem 2016, 138 (3), 
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5.1 ABSTRACT 

Histamine and serotonin are neuromodulators which facilitate numerous, 

diverse neurological functions. Being co-localized in many brain regions, these two 

neurotransmitters are thought to modulate one another’s chemistry and are often 

implicated in the etiology of disease. Thus, it is desirable to interpret the in 

vivo chemistry underlying neurotransmission of these two molecules to better 

define their roles in health and disease. In this work, we describe a voltammetric 

approach to monitoring serotonin and histamine simultaneously in real time. Via 

electrical stimulation of the axonal bundles in the medial forebrain bundle, 

histamine was evoked in the mouse premammillary nucleus. We found that 

histamine release was accompanied by a rapid, potent inhibition of serotonin in a 

concentration dependent manner. We developed mathematical models to capture 

the experimental time courses of histamine and serotonin, which necessitated 

incorporation of an inhibitory receptor on serotonin neurons. We employed 

pharmacological experiments to verify that this serotonin inhibition was mediated 

by H3 receptors. Our novel approach provides fundamental mechanistic insights 

that can be used to examine the full extent of interconnectivity between histamine 

and serotonin in brain. 
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5.2 INTRODUCTION 

Serotonin and histamine are neuromodulators thought to carry a variety of 

roles in the brain 1-3. These two modulators are co-localized in many brain regions 

4,5 and are postulated to closely modulate one another 6,7. However, while there is 

much focus on serotonin’s roles in affective, sleep and cognition processes 8,9, 

histamine’s contribution to the same processes remains relatively neglected.  In 

recent years, we established fast scan cyclic voltammetry (FSCV) at carbon fiber 

microelectrodes (CFMs) to investigate in vivo serotonin dynamics 10. We are 

systematically studying the array of in vivo processes that regulate serotonin 

extracellular levels 11,12 with the ultimate goal of identifying distinct mechanistic 

abnormalities that underlie different pathophysiological states. Because of 

histamine’s close association with serotonin, in particular the electrophysiological, 

histological and slice voltammetry studies that imply histamine inhibits serotonin 

release 6,13-15 we now find it of great importance to direct our efforts to 

voltammetrically defining histamine and serotonin co-modulation in vivo. 

In this paper, we extend on recent work where we described the first 

voltammetrically selective waveform for real time FSCV histamine measurements 

in vivo in the mouse 16, to  detail simultaneous in vivo measurements of serotonin 

and histamine. To achieve this, CFMs were implanted in the mouse premammillary 

nucleus (PM), a hypothalamic region rich in serotonin and histamine 4,5,17. To 

assess the effects of histamine release on endogenous serotonin chemistry, we 

identified a discrete location in the medial forebrain bundle (MFB) that, when 

electrically stimulated, evoked histamine but not serotonin in the PM. This robust 
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experimental model allowed us to observe histamine release rapidly followed by 

potent, long lasting serotonin inhibition. We found that both histamine release and 

serotonin inhibition were dependent on stimulation parameters in a manner that 

indicated an inversely correlative relationship. We mathematically modeled both 

responses and found that an inhibitory receptor term was necessary to fit both sets 

of data. We postulated that this inhibitory receptor was the H3 receptor and 

provided pharmacological evidence, in the form of manipulations with 

thioperamide, an H3 receptor antagonist, in favor of our hypothesis.  

We thus provide not only an important technological advance, but our 

physiological findings also represent an opportunity to more closely scrutinize 

histamine’s roles in controlling serotonin chemistry in the context of disease. 

5.3 MATERIALS AND METHODS 

Chemicals and Reagents 

Standard solutions were prepared by dissolving histamine dihydrochloride 

and serotonin hydrochloride (Sigma-Aldrich, Co., MO, USA) respectively in Tris-

buffer. Tris-buffer was constituted thus: 15 mM H2NC(CH2OH)2.HCl, 140 mM NaCl, 

3.25 mM KCl, 1.2 mM CaCl2, 1.25 mM NaH2PO4.H2O, 1.2 mM MgCl2 and 2.0 mM 

Na2SO4 (EMD Chemicals Inc. NJ, USA) in deionized water at pH=7.4 

Thioperamide maleate (2, 20, or 200 mg kg-1) from TOCRIS bioscience (Bristol, 

UK) was dissolved in sterile saline and administered via intra-peritoneal injection 

at a volume of 0.6 ml kg-1. 
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Carbon-Fiber Microelectrodes (CFMs) 

CFMs were fabricated employing 7µm diameter carbon-fibers (Goodfellow 

Corporation, PA, USA) aspirated into glass capillaries (0.6 mm external diameter, 

0.4 mm internal diameter, A-M systems, Inc., Sequim, WA). A carbon-glass seal 

was formed using vertical micropipette puller (Narishige Group, Tokyo, Japan). 

The exposed length of the carbon fiber was trimmed to 150 µm under an optical 

microscope. Microelectrodes were electroplated with Nafion as described 

previously  10. 

Data Collection 

Waveform generation, data acquisition and signal processing were 

achieved by a commercial potentiostat (Dagan corp.), custom-built hardware, 

software written in house using LabVIEW 2009 and interfacing a PCIe-6341 

DAC/ADC card (National Instruments, Austin, TX). Custom built software was 

employed to drive the hardware and perform data analysis including background 

subtraction, signal averaging and digital filtering (Knowmad Technologies LLC, 

Tucson, AZ). All potentials are quoted with respect to Ag/AgCl reference 

electrodes, which were fabricated via electrodeposition of Cl- by holding a silver 

wire (A-M systems, WA) at 4.0 V for 5 s in 1 M HCl. All data represented with error 

bars represent the standard error of the mean (SEM). 

Data Analysis 

All the Current vs time data were extracted from custom made software. 

Histamine current was transferred to its concentration using 2.825 µM/nA factor. 

Conversion factor for serotonin was 11 nM/nA. Statistical differences were 
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obtained using one-tailed Student’s t-tests on paired data sets. (p < 0.05 was taken 

as significantly different) 

Data Modeling 

Simulations were carried out in MatLab R2014a (MathWorks, Natick, MA, 

USA) using ODE solver ode23s, implemented on an iMac with operating system 

OS X Version 10.6.8. We modeled our experimental data with two differential 

equations:  

    
d[eha]

dt
= AH3(t) fire ha(t)[vha]-Vu([eha])+a1[cha]-Vug([eha])-a2[gha]  (1) 

The left-hand side is the rate of change of the extracellular histamine [eha]. 

The first term on the right side multiplies the fractional release, 𝐴𝐻3(𝑡), caused by 

autoreceptor inhibition by the firing rate, 𝑓𝑖𝑟𝑒ℎ𝑎(𝑡), and the vesicular histamine 

concentration, [υha]. The remaining terms are reuptake into the terminal, 𝑉𝑢([𝑒ℎ𝑎]), 

leakage from the terminal, 𝑎1[𝑐ℎ𝑎], uptake into glial cells, 𝑉𝑢𝑔([𝑒ℎ𝑎]), and leakage 

from the glial cells, 𝑎2[𝑔ℎ𝑎].  There is a similar differential equation for serotonin in 

the extracellular space: 

d[e5ht]

dt
= AH 3

5ht (t) fire5ht (t)[v5ht]-Vsert ([e5ht])+a3[c5ht]-Vug([e5ht])-a4[g5ht] (2) 

The term 𝐴𝐻3
5ℎ𝑡  is the time course of fractional serotonin release caused by 

the H3 receptors on serotonin neurons. All other terms in equation 2 are 

analogous to the terms in equation 1.  
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Flow Injection Analysis 

Flow injection analysis (FIA) was used for in vitro analyses. CFMs were 

inserted into a flangeless short 1/8 nut (PEEK P-335, IDEX, Middleboro, MA) in 

order for 2 mm of the tip to be exposed outside of the nut. The microelectrode-

containing nut was then fastened into a modified HPLC union elbow (PEEK 3432, 

IDEX, Middleboro, MA). The other end of the elbow union was fastened into the 

out-flowing stream of the FIA buffer and incorporation of the reference electrode 

and for a ‘waste’ flow stream by drilling into the union. In vitro experiments were 

carried out at 2 mL min-1 flow rate using syringe infusion pump (kd Scientific, model 

KDS-410, Holliston, MA). Starting at 5s, a rectangular pulse of analyte was 

introduced into the buffer stream for 10 s via a six-port HPLC loop injector 

(Rheodyne model 7010 valve, VICI, Houston, TX). In order to avoid carry-over 

effects, analytes were injected randomly. 

Animal Surgeries 

Handling and surgery on male C57BL/6J mice weighing 20−25 g (Jackson 

Laboratory, Bar Harbor, ME) were in agreement with University of South Carolina 

Guide for the Care and Use of Laboratory Animals, approved by the Institutional 

Animal Care and Use. Urethane (25% dissolved in 0.9% NaCl solution, Hospira, 

Lake Forest, IL) was injected intraperitoneally (i.p) and once deep anesthesia was 

confirmed, animals were secured into a stereotaxic instrument (David Kopf 

Instruments, Tujunga, CA) and stereotaxic surgery was performed. A heating pad 

sustained mouse body temperature around 37 °C (Braintree Scientific, Braintree, 

MA). Stereotaxic coordinates were taken in reference to bregma. A Nafion 
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modified CFM was in the PM (AP: −2.45, ML: +0.50, DV: −5.45 to −5.55.). A 

stainless steel stimulating electrode (diameter: 0.2 mm, Plastics One, Roanoke, 

VA) was positioned into the MFB (AP: -1.07, ML: +1.10, DV: −5.00). Biphasic pulse 

trains applied through a linear constant current stimulus isolator (NL800A, 

Neurolog, Medical Systems Corp., Great Neck, NY) provoked histamine efflux. 

The 60 Hz trains were 350 μA each phase, 2 ms in width, and 2 s in length. To 

determine the effects of different stimulation parameters on histamine and 

serotonin, stimulation frequency, width and amplitude were systematically altered. 

The time in between stimulations (2 minutes) was determined sufficient to produce 

negligible effects on serotonin and histamine in subsequent stimulations.  A 

Ag/AgCl reference electrode (constructed by plating Cl- ions onto a Ag wire) was 

implanted into the brain’s opposite hemisphere. 

5.4 RESULTS  

Simultaneous Measurements of Serotonin and Histamine 

In this experiment, we implanted a CFM in the PM of an anesthetized mouse 

and electrically stimulated the MFB. A representation of this experimental model, 

illustrating the relative positions of the working and stimulations electrodes can be 

found in Figure 5.1A (i). Directly underneath this, in Figure 5.1B (i), is a raw data 

color plot showing the resultant electrochemical signal at the CFM. The 

interpretation of color plots is described elsewhere in detail 18. Concisely, 

background subtracted cyclic voltammograms collected at 10 Hz for 30 seconds 

are displayed as voltage (y-axis) vs. time (x-axis) and current (false color). The 

green bar directly under the color plot denotes the occurrence and duration of the 
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electrical stimulation. Upon stimulation there are several events, typical of in vivo 

FSCV measurements whereby other electroactive species, pH changes and ionic 

fluxes affect the measurement 19,20. Of interest is the discrete event occurring at 

0.3 V which is denoted by the horizontal dashed line and the blue star. A cyclic 

voltammogram (CV) extracted from the vertical dashed line through this event is 

displayed in Figure 5.1C (i) (solid line).  

 
Figure 5.1. (Ai & Aii) The position of electrodes (stimulation and CFM) in mouse 
brain. B(i) & B(ii) Representative color plots of the stimulated release of histamine 
and serotonin in the premammillary nucleus (PM) and stimulated release of 
serotonin in the substantia nigra (SNr) respectively. (Ci & ii) Superimposed cyclic 
voltammograms of in vivo and in vitro histamine and serotonin signals taken from 
vertical dashed lines in the PM. Ciii) Comparison of normalized CVs of in vivo 
serotonin signals taken from vertical dashed lines in both PM and SNr. HA= 
histamine, 5-HT = serotonin. 
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The oxidation peak at 0.3 V shows excellent agreement with the oxidation 

peak extracted from an in vitro injection of histamine (dashed) normalized to 

maximum current and superimposed onto this in vivo CV. In our prior work, we 

showed electrochemically and pharmacologically that this event is histamine 

release 16. Histamine’s electro-oxidation scheme has not yet been described. It is 

likely that the peak at 0.3V occurs because of a proton transfer type oxidation 

between the aliphatic amine group and imidazole amine group in the histamine 

molecule. Because this is an internal proton transfer oxidation, it follows that it 

should occur at a potential lower than observed for classic serotonin and dopamine 

electrooxidation (i.e. 0.6 - 0.8 V) 21. 

An additional event of interest occurs at around 0.7 V and is denoted by the 

horizontal dashed line and red heart. Because FSCV is background subtracted, 

ambient levels cannot be determined, thus according to the false color scale, this 

event signals a decrease in concentration. A CV collected at the vertical dashed 

line through this event is presented in Figure 5.1C (ii). A CV taken from an in vitro 

injection of serotonin was inverted on the current axis (to mimic a decrease in 

concentration), normalized to maximum current and superimposed (dashed) onto 

the in vivo CV. The good agreement between the peaks at 0.7 V strongly implies 

that this event is caused by serotonin. To further confirm this notion, we made a 

measurement of serotonin with this waveform via an experimental model of MFB 

stimulation and measurement in the substantia nigra pars reticulata (SNr) that we 

have well established for serotonin FSCV 22. This experimental model is depicted 

in Figure 5.1A (ii) and the color plot arising from the in vivo experiment is shown 
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in Figure 5.1B (ii). The stimulated serotonin event occurs at the same horizontal 

(potential) position on the color plot. The CV extracted from this color plot, inverted, 

normalized to maximum current and superimposed to the in vivo CV collected in 

the PM shows in excellent agreement in Figure 5.1C (iii).  

Serotonin Inhibition Following Histamine Release 

 

Figure 5.2. (A) Representative color plot of the stimulated release of histamine 
and serotonin inhibition in the PM. (B) Correlation plot between [histamine] and 
[serotonin] for all stimulation parameters. (C) Averaged current vs. time traces 
along the two horizontal dashed lines of histamine and serotonin with respect to 
different stimulation frequencies (n=5). (D) Averaged current responses to various 
stimulation pulse widths of histamine and serotonin (n=5). (E) Averaged current 
responses to various stimulation amplitudes of histamine and serotonin (n=5). [HA] 
= [histamine], [5-HT] = [serotonin]. 
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therefore, is indicative of a reduction in the ambient concentration of serotonin after 

stimulation. Figure 5.2A is a representative color plot showing simultaneous 

histamine release and serotonin inhibition in the PM upon MFB stimulation. Figure 

5.2C-E shows serotonin and histamine concentrations with time for different 

stimulation parameters (dark solid lines = maximum responses and lighter dashed 

lines = lower responses) extracted from the horizontal dashed lines from the color 

plot (n=5 animals). The decrease in serotonin concentration is delayed around 2 

seconds with respect to histamine release, implying that serotonin inhibition may 

be dependent on histamine release. To probe this notion, we systematically altered 

stimulation parameters to assess whether the profile of histamine release affects 

serotonin inhibition. The dark solid line shows the maximum responses for the 60 

Hz stimulation frequency in Figure 5.2C. The lighter colored dashed lines in 

Figure 5.2C shows the result of altering the stimulation frequency from 10 - 40 Hz 

(n=5 animals). There is a clear correlation between histamine release and the 

serotonin inhibition profiles. This is apparent in terms of both time course (i.e. 10 

Hz stimulation leading to lower, more prolonged histamine release and subsequent 

serotonin inhibition) and amplitude (higher level of histamine release corresponds 

to higher level of serotonin inhibition). This pattern holds true for stimulation pulse 

width and amplitude (Figure 5.2D and E) (n=5 animals). In Figure 5.2B, the 

relationship between histamine release and serotonin inhibition was more formally 

explored by directly plotting amplitude of histamine release vs. amplitude of 

serotonin inhibition for the three stimulation parameters explored. We found a 
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linear relationship (R2 = 0.757) connecting histamine release to serotonin inhibition 

for all three parameters explored. 

Mathematical Modeling of Serotonin and Histamine Co-regulation 

We needed to vary only three functions, 𝑓𝑖𝑟𝑒ℎ𝑎(𝑡), 𝐴𝐻3(𝑡), and 𝐴𝐻3
5ℎ𝑡(t), from 

equations 1 and 2 to obtain excellent model fits to our experimental data. Figures 

5.3A and B show the model fits (dotted lines) to the experimental curves (solid 

lines) for control and 20 mg kg-1 thioperamide, respectively. Thioperamide 

selectively acts as an H3 receptor (auto and hetero) antagonist on both histamine 

and serotonin pre-synaptic neurons 23. In our model, the electrical stimulation is 

mimicked by raising  𝑓𝑖𝑟𝑒ℎ𝑎(𝑡) above its tonic level of 5 spikes/sec. Figure 5.3C 

shows 𝑓𝑖𝑟𝑒ℎ𝑎(𝑡) vs. time that best fits the control and thioperamide experiments. 

𝑓𝑖𝑟𝑒ℎ𝑎(𝑡) returns to baseline at 9 seconds and the rates are higher after 

thioperamide.   

To fit the slow decline in histamine after stimulation, it was necessary to 

incorporate an autoreceptor function as per our previous serotonin model 12 Figure 

5.3D shows fractional histamine release, 𝐴𝐻3(𝑡), as a function of H3 autoreceptors 

activation following stimulation before and after thioperamide. In the control 

experiment, tonic inhibition was 𝐴𝐻3(𝑡)= 0.7 up to 9 seconds, then dropped to 

𝐴𝐻3(𝑡)= 0 up to 15 seconds (complete inhibition), and then returned to 𝐴𝐻3(𝑡)= 0.4 

from 15 seconds to 30 seconds. For thioperamide, 𝐴𝐻3(𝑡)= 0.9, and the smallest 

fractional release is 𝐴𝐻3(𝑡) = 0.5. Our model shows that the H3 autoreceptor effect 

is delayed (starting at 9 seconds) and lasts throughout our file collection window 

(30 seconds). 
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Figure 5.3. (A) [Histamine] vs. time plots comparing in vivo (solid traces) and the 
results of the mathematical model (large dots) in the control case. (B) [Serotonin] 
vs. time plots comparing in vivo (solid traces) and the results of the mathematical 
model (large dots) in the presence of thioperamide (20 mg kg-1) (C) Firing rate of 
the histamine neurons as a function of time in the two cases control (blue) and 
drug (green), respectively. (D) Assumed fractional release of histamine from the 
histamine neurons as a function of time in the two cases. [HA] = [histamine], [5-
HT] = [serotonin]. 
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H3 Receptor Mediated Inhibition of Serotonin 

Three different doses of thioperamide, an H3 receptor antagonist 23, were 

administered to different groups of mice. This agent’s effects on histamine release 

and serotonin inhibition was observed 50 minutes after administration, which is a 

sufficient time period for thioperamide to exert its effects 24,25. The results are 

shown in Figure 5.4. Here, histamine before drug is displayed in blue and after 

drug in green, serotonin before drug is red, and after drug is orange. Error bars 

showing SEM (n=5 ± SEM) are lighter versions of these respective colors. 

 
Figure 5.4. [Histamine] vs time traces are shown in blue and green for pre and 
post drug administration respectively. [Serotonin] vs time traces are shown in red 
and orange for before and after the drug. Error bars showing SEM (n=5 ± SEM) 
are lighter versions of these respective colors. (A) thioperamide 2 mgKg-1 (B) 
thioperamide 20 mgKg-1 (C) thioperamide 50 mgKg-1. [HA] = [histamine], [5-HT] = 
[serotonin]. 
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but not in rate of histamine clearance (t1/2 from 11.5 ± 1.5 s to 14.3 ± 2.4 s, p = 

0.07). The effects of 2 mg kg-1 on the amplitude and time course of serotonin 

inhibition were negligible. Maximum serotonin inhibition changed from 34.2 ± 7.5 

nM to 37.5 ± 11.9 nM (p = 0.55), whereas, inhibition at 30 s enhanced from 15.8 ± 

1.5 nM to 22.1 ± 8.9 nM (p = 0.31). Thioperamide administered at 20 mg kg-1 dose 

affected both the amplitude and clearance time of histamine response. Histamine 

elevated from 7.9 ± 2.1 µM to 11.9 ± 4.2 µM (p = 0.03) and t1/2 from 14.7 ± 2.8 s to 

19.6 ± 2.3 s (p = 0.02), but only the time course of the serotonin response 

(maximum inhibition from 38.8 ± 5.01 nM to 44.8 ± 4.5 nM (p = 0.31). Furthermore, 

serotonin inhibition at 30 s increases from 16.5 ± 5.3 nM to 37.7 ± 9.6 nM, (p = 

0.002). At the highest dose, thioperamide greatly affected histamine release from 

6.8 ± 1.9 µM to 14.3 ± 4.1 µM (p = 0.006) and reuptake such that histamine does 

not return to baseline during the 30 second file acquisition window. The effects on 

serotonin are also highly significant. Maximum inhibition elevated from 37.3 ± 9.6 

nM to 68.2 ± 20.0 nM (p = 0.04), whereas, inhibition at 30 s enhanced from 24.4 ± 

7.9 nM to 65.9 ± 14.8 nM (p = 0.03). 

5.5 DISCUSSION 

FSCV: A Powerful Tool for Simultaneous, Real-time Serotonin and Histamine 

Measurements 

FSCV at CFMs is a powerful tool for neurotransmitter analysis because of 

FSCV’s rapid, sensitive and selective analysis capabilities in addition to the 

minimally invasive dimensions of CFMs. A traditional drawback of FSCV is its 

limited in vivo analytical scope (measuring primarily dopamine) 26-28, which has 
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been systematically challenged in recent years via advances to measure serotonin 

10, adenosine 29, H2O2 30 and gonadotropin-releasing hormone 31. We are primarily 

interested in deciphering the in vivo dynamics that regulate extracellular serotonin 

levels, and we were thus oriented towards histamine. There is a significant body 

of literature that suggests histamine inversely modulates serotonin in the brain 6,15. 

Many of these studies propose that dysregulations in histamine underlie disorders 

that are primarily considered to be serotonin mediated (e.g. depression) 32-34. In 

2011 we described simultaneous histamine and serotonin measurements in the 

rat SNr 22. However, the FSCV peaks utilized to quantify histamine occurred at the 

anodic switching potential. These so called ‘switching peaks’ occur when 

spontaneous adsorption of analytes changes the electrical bilayer, hence 

capacitative current on the CFM. While switching peaks can be used to quantify 

histamine in a well-controlled environment (i.e. in vitro or tissue slice preparations), 

they cannot be used in vivo because other analytes that adsorb to the CFM provide 

identical, indistinguishable CVs 16. 

In 2015, we addressed the issue of selective in vivo histamine analysis by 

developing a detection waveform that displayed a distinct Faradaic-like peak 

corresponding to histamine oxidation. We successfully applied this waveform in 

vivo to selectively quantify histamine 16. In this study, we show that this novel 

waveform can simultaneously and selectively measure not only histamine, but also 

serotonin (vide infra), which greatly aids our interests in establishing how histamine 

modulates serotonin chemistry.  
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MFB Stimulation Rapidly, Potently Inhibits Ambient Serotonin in the PM 

Figure 5.1 shows histamine release upon MFB stimulation in a 

hypothalamic region, the PM. We and others previously established this 

stimulation and measurement model to be robust and successful in evoking 

histamine 35,36 since the PM is home to a dense population of histamine cell bodies 

36 and the region of the MFB that we stimulate contains histamine axons 37,38. The 

PM region also contains serotonin terminals 5,17, therefore we postulated that the 

PM seemed a promising area to study histamine/serotonin modulation, particularly 

because our data imply that the electrical stimulation does not evoke serotonin. 

This finding is supported by the presence of fewer serotonin axons in the anterior 

area of the MFB (our stimulation location) 39,40. Importantly, this model allows us 

to investigate histamine’s effects on serotonin chemistry in the absence of 

stimulated serotonin release. This type of measurement can be greatly facilitated 

in the future with the development of optogenetic tools that selectively target 

histamine. 

In accord with our postulation, in Figure 5.1, an event following the evoked 

histamine event by around 2 seconds is apparent. Via comparison of CVs collected 

in vitro and in vivo in the SNr (an area we have well established for serotonin 

FSCV) 21,41, we can electrochemically verify this second event to be caused by 

serotonin. The small deviation in the peak positions in Figure 5.1C (ii) is typical 

when comparing in vivo and in vitro responses and is likely due to differences in 

ohmic drop between in vitro and in vivo preparations. Of great interest, our data 

indicate that the serotonin levels are decreasing in response to the stimulation. 
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Because FSCV is a background subtracted method, ambient levels cannot be 

established therefore the conclusion of this data is that MFB stimulation inhibits 

ambient serotonin activity by around 40 nM. FSCV most commonly observes 

increased neurotransmitter activity; thus, our experiment represents an exciting 

opportunity to study inhibition of ambient activity.  

We next hypothesize that this inhibition is, at least partially, mediated by 

histamine based on prior histamine/serotonin modulation studies 6,15. In the next 

sections we take experimental, mathematical and pharmacological approaches 

towards this hypothesis. 

Histamine Mediates Serotonin Inhibition in the PM 

i) Serotonin Inhibition is Concentration and Time Correlated to Histamine Release 

To show that histamine, rather than another result of MFB stimulation 

inhibits serotonin in the PM, we systematically altered our stimulation parameters 

to change the profile of histamine release. Figure 5.2 shows excellent agreement 

between the time course and amplitude of histamine release and serotonin 

inhibition. The raw data in Figures 5.2 C, D and E show that the profile of serotonin 

inhibition closely tracks histamine release, and the Figure 5.2B highlights this 

correlation more formally by plotting maximum histamine release amplitude vs. 

maximum serotonin inhibition amplitude. The linear relationship between 

histamine and serotonin with all stimulation parameters is strong evidence for 

chemical rapport between these two molecules in the PM. 

 



www.manaraa.com

 

 111 

ii) Mathematical Modeling of Serotonin Inhibition Necessitates an Autoreceptor 

Function. 

The power of interpreting experimental data through mathematical models 

is the ability to test a number of physiological hypotheses. Above, we hypothesized 

that serotonin inhibition is histamine mediated, we now test this notion 

mathematically. Our model necessitates ambient (basal) histamine and serotonin 

levels which we are not yet able to determine with FSCV. For histamine, a value 

of 1.5 μM was chosen, because our data show that after stimulation histamine 

levels fall 1 μM or more below baseline (Figures 5.2, 5.3, 5.4). Similarly, for the 

same reason we chose 65 nM as the basal concentration of serotonin in the 

extracellular space. We found that we could fit the data closely via simple 

manipulations of H3 heteroreceptor and autoreceptor strengths in our model. H3 

heteroreceptors on serotonin terminals 15,42 have previously been postulated to 

inhibit serotonin 6. Our model supports this hypothesis, particularly given that is 

unlikely that the serotonin inhibition we observe is attributable to other slower 

mechanisms such as synthesis inhibition. Thus, to probe this idea further, we took 

a pharmacological approach.  

iii) H3 receptor Mediation of Serotonin Inhibition 

Given the results of our mathematical modeling and the large body of prior 

work implicating H3 heteroreceptors as an inhibitory mechanism for serotonin 15,42 

we decided to probe H3 receptor mediation of serotonin. Figure 5.4 shows the 

results of systemically administering varying doses of a potent H3 receptor 

antagonist, thioperamide, to different mice. The low dose (2 mg kg-1) increased the 
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amplitude of histamine release (consistent with prior studies with dopamine and 

D2 autoreceptor antagonism) 43,44, but has no significant effect on serotonin. This 

phenomenon is not difficult to explain because the serotonin response is controlled 

by dual mechanisms of a) now increased histamine available to antagonize H3 

receptors and b) a larger percentage of H3 receptors antagonized on serotonin 

neurons. The overall result is a manifestation of two opposing effects that cancel 

each other out. 

The 20 mg kg-1 dose had effects on both histamine release and clearance 

(reuptake effects have been previously seen with serotonin autoreceptor 

antagonism) (Wood et al. 2014). The effect on the magnitude of serotonin inhibition 

was not significant, however it seems that the prolonged histamine in the synapse 

is outcompeting thioperamide for H3 receptors on serotonin neurons to create 

prolonged serotonin inhibition (> 60 seconds).  

H3 heteroreceptors are likely more localized in the synapse, because of their 

position on serotonin terminals 45 than are H3 autoreceptors on presynaptic 

histamine neurons. Autoreceptors are generally found outside of the direct 

synaptic space, asserting inhibition when a concentration threshold is reached 46. 

The inhibition constant (Ki) of thioperamide is smaller than the Michaelis Menton 

constant (Km) of histamine towards H3 receptors 47,48. However, after stimulation 

histamine concentrations are very high in the direct synaptic space (likely reaching 

mMs based on prior dopamine models) 49 and fall off exponentially with distance. 

Because the thioperamide concentration is assumed to be homogenous 

throughout this brain region, the histamine most certainly outcompetes 
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thioperamide for H3 heteroreceptors on serotonin neurons. This notion is made 

apparent by the largest dose (50 mg kg-1) of thioperamide which created significant 

and long-lasting serotonin inhibition. 

In sum, we showcased the power of FSCV for simultaneous measurements 

of histamine and serotonin the PM. We showed that MFB stimulation released 

histamine but created a potent inhibition of serotonin. Voltammetrically, 

mathematically and pharmacologically we showed serotonin inhibition was 

dependent on histamine release, via an H3 receptor mediated mechanism. Our 

approach signals a powerful advancement in FSCV technology that will facilitate 

the systematic study of histamine and serotonin dynamics in the variety of different 

brain processes involving these two molecules. 
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    CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 
 

A detailed characterization of the different facets of serotonin 

neurotransmission in vivo has remained a challenge since the discovery of 

serotonin over 50 years ago. In this dissertation, I introduce novel methods, 

developed in the Hashemi lab, to better understand the phasic and tonic properties 

of serotonin, along with a better understanding of the neuromodullatory relation 

between histamine and serotonin.  

In Chapter 2, FSCAV was first introduced for the measurement of ambient 

serotonin in vivo. This method was shown to be selective, stable, and sensitive to 

serotonin over other interferences, both in vitro and in vivo. This combination of 

tools was then utilized in chapter 3 to study different brain regions; the 

hippocampus and the medial prefrontal cortex. FSCV measurements in these 

specific localities has shown characteristic differences in their reuptake curves 

events, that was attributed mainly to the differences in SERTs and non-SERTs in 

these regions. This was further verified with triple staining immunohistochemistry, 

and the effects of these different SERT densities was reflected in the ambient 

serotonin levels measured with FSCAV.  

In chapter 4, a novel FSCV waveform for the study of HA is optimized for 

in vivo studies. In vivo, HA was evoked in the PH following stimulation in the
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MFB. In chapter 5, it was determined that within this same region, serotonin could 

also be measured simultaneously with HA. Our work has shown that histamine 

inhibits serotonin in the PH region of the brain. The modulation of serotonin by 

other neurotransmitters is believed to be one of the methods of serotonin 

regulation in the brain. 

My work in this dissertation has laid the foundation for exploring new 

serotonin circuitries to further understand the neurochemistry of serotonin. 

Through this, further work can be done on different disease model to study the 

changes that arise from different pathophysiologies. The combination of FSCV and 

FSCAV, along with different statistical and mathematical models, is now able to 

provide a new approach to study the different complex aspects of serotonin 

neurochemistry.  
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APPENDIX A: SUPPLEMENTARY INFORMATION FROM 
CHAPTER 2 

 

The fitting of the different electrodes used in the in vitro calibrations was 

performed using regression via the lm command in the R programming package.1,2 

The results of the regression demonstrate significant difference in the intercept and 

slope of the different electrodes. The fitted lines for the 15 electrodes are given in 

the Figure S.1 below. The linear model that was fitted for the kth (k = 1, 2, …, 15) 

electrode is of form: 

 Charge = B0 + Ek + B1 * C+ Ik* C + Error,  (1) 

where E0 = 0 and I0 = 0. In these linear models, Ek and Ik are kth-electrode specific 

effects, with Ik an interaction effect between Charge and the kth electrode, and C 

denotes the concentration. “Error” represents measurement error.  

Using the model developed as explained in the Experiments section and 

based on the concentration estimates over time a linear-parabolic model was fitted. 

This model was motivated by the expectation that the concentration level is 

constant before the drug takes effect, and when the drug takes effect, then the 

concentration level is expected to increase for a certain period of time. Thus, the 

functional continuous model that was fitted using the pairs of time and the 

concentration estimates was linear over the time portion where there is no drug 

effect and was parabolic afterwards.  Mathematically, this linear-parabolic model 

is given by



www.manaraa.com

 

 121 

C(t) = w0+ w1*t + k1*[max (0, T+d-t)] – k2*[max (0, T+d-t)]2 + Error,     (2) 

where T is the time when the drug intervention was performed (T = 60 minutes), 

while d is the lag-time until the drug starts taking effect. 

 
  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.1. Concentration (in nM) and charge (in pC) measurements obtained for 
15 electrodes together with their fitted values based on linear models with 
interaction terms. 
 

 The weighted regression fitting of the model was done using the lm 

command in the R programming package, with weights equal to the inverse of the 

estimated variance of the concentrations. Point-wise confidence intervals (CI) 

were constructed based on the fitted linear-parabolic model using the predict.lm 

command in the R package. 

Standard errors and tests of significance of the coefficients are: 
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Pargyline 

Table A.1. Standard errors and tests of significance of the coefficients for 
Pargyline (75 mg/kg). 

 
 

GBR 12909 

Table A.2. Standard errors and tests of significance of the coefficients for GBR 
12909 (15 mg/kg) 

 

             

Estimate 

  Standard 

Error 

                      

t value 

            

Pr(>|t|) 

(Intercept) 65.216532 0.304313 214.307 < 2e-16 *** 

Time 0.004124 0.007753 0.532 0.596 

Timelag 0.526824 0.031933 16.498 < 2e-16 *** 

timelag2 -0.004234 0.000505 -8.385 1.25e-13 *** 

             

Estimate 

  Standard 

Error 

                      

t value 

           

Pr(>|t|) 

(Intercept) 5.882e+01 2.357e-01 249.533 <2e-16 *** 

Time 5.460e-03 9.008e-03 0.606 0.546 

time2 -8.779e-05 7.208e-05 -1.218 0.226 
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Desipramine 

Table A.3. Standard errors and tests of significance of the coefficients for 
Desipramine (15 mg/kg) 
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Estimate 

  Standard 

Error 

                      

t value 

           

Pr(>|t|) 

(Intercept) 7.154e+01 7.349e-02 973.500 <2e-16 *** 

Time 1.274e-03 2.807e-03 0.454 0.651 

time2 -4.159e-06 2.245e-05 -0.185 0.85 
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APPENDIX B: PERMISSION OBTAINED FROM THE AMERICAN 
CHEMICAL SOCIETY TO REPRINT THE ARTICLE IN CHAPTER 2 
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APPENDIX C: PERMISSION OBTAINED FROM THE ROYAL 
SOCIETY OF CHEMISTRY TO REPRINT THE ARTICLE IN 

CHAPTER 4 
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